Persona: Vargas Ureña, Antonio Manuel
Cargando...
Dirección de correo electrónico
ORCID
0000-0002-2235-0111
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Vargas Ureña
Nombre de pila
Antonio Manuel
Nombre
17 resultados
Resultados de la búsqueda
Mostrando 1 - 10 de 17
Publicación Continuous and discrete periodic asymptotic behavior of solutions to a competitive chemotaxis PDEs system(Elsevier, 2021-04) Negreanu, Mihaela; Vargas Ureña, Antonio ManuelIn this paper we study the continuous and full discrete versions of a parabolic-parabolic-elliptic system with periodic terms that serves as a model for some chemotaxis phenomena. This model appears naturally in the interaction of two biological species and a chemical. The presence of the periodic terms has a strong impact on the behavior of the solutions. Some conditions on the system’s data are given that guarantee the global existence of solutions that converge to periodical solutions of an associated ODE’s system. Further, we analyze the discretized version of the model using a Generalized Finite Difference Method (GFDM) and we confirm that the properties of the continuous model are also preserved for the resulting discrete model. To this end, we prove the conditional convergence of the numerical model and study some practical examples.Publicación Numerical solution of a hydrodynamic model with cavitation using finite difference method at arbitrary meshes(ScienceDirect, 2024-07-25) García Hernández, Miguel Ángel; Negreanu, Mihaela; Ureña, Francisco; Vargas Ureña, Antonio Manuel; https://orcid.org/0000-0003-0533-3464 View this author’s ORCID profileIn this paper, we investigate the implementation of the finite difference method on arbitrary meshes in conjunction with a fixed-point algorithm for the lubrication problem of a journal bearing with cavitation, considering the Elrod-Adams model. We establish numerical properties of the generalized finite difference scheme and provide several illustrative examples.Publicación Two finite difference methods for solving the Zakharov–Kuznetsov-Modified Equal-Width equation(Elsevier, 2023-08) Benito Muñoz, Juan J.; García, Ángel; Negreanu, Mihaela; Ureña, Francisco; Vargas Ureña, Antonio ManuelWe derive the implementation of two meshless methods, the Space–Time Cloud Method and the Generalized Finite Difference Method, for solving the Zakharov–Kuznetsov-Modified Equal-Width equation, a nonlinear wave equation used to model the propagation of waves in nonuniform media. Also, we prove convergence of the GFD explicit scheme. We compare both methods in terms of accuracy and efficiency (execution times).Publicación Solving a chemotaxis-haptotaxis system in 2D using Generalized Finite Difference Method(ScienceDirect, 2020-05-27) Benito Muñoz, Juan J.; García Hernández, Miguel Ángel; Gavete Corvinos, Luis Antonio; Negreanu, Mihaela; Ureña, Francisco; Vargas Ureña, Antonio Manuel; https://orcid.org/0000-0002-9092-9619; https://orcid.org/0000-0001-6581-5671; https://orcid.org/0000-0003-0533-3464We study a mathematical model of cancer cell invasion of tissue (extracellular matrix) consisting of a system of reaction-diffusion-taxis partial differential equations which describes the interactions between cancer cells, the matrix degrading enzyme and the host tissue. We analyze the local stability of the constant equilibrium solutions to the chemotaxis-haptotaxis system, we derive a discretization of the system by means of the Generalized Finite Difference Method (GFDM) and we prove the convergence of the discrete solution to the analytical one. Also, we provide several numerical examples on the applications of this meshless method over regular and irregular domains.Publicación Application of finite element method to create a digital elevation model(MDPI, 2023-03-21) Conde López, Eduardo Roberto; Salete Casino, Eduardo; Flores, Jesús; Vargas Ureña, Antonio Manuel; https://orcid.org/0000-0002-6280-523XThe generation of a topographical surface or digital elevation model for a given set of points in space is a known problem in civil engineering and topography. In this article, we propose a simple and efficient way to obtain the terrain surface by using a structural shell finite element model, giving advice on how to implement it. The proposed methodology does not need a large number of points to define the terrain, so it is especially suitable to be used with data provided by manual topographical tools. Several examples are developed to demonstrate the easiness and accuracy of the methodology. The digital terrain model of a real landscape is modeled by using different numbers of points (from 49 to 400) using a regular mesh or a randomly generated cloud of points. The results are compared, showing how the proposed methodology creates a sufficiently accurate model, even with a low number of points (compared with the thousands of points handled in a LiDAR representation). A real case application is also shown. As an appendix, the sample code to generate the examples is provided.Publicación Numerical solution to a Parabolic-ODE Solow model with spatial diffusion and technology-induced motility(ScienceDirect, 2024-04-08) Ureña, N.; Vargas Ureña, Antonio ManuelThis work studies a parabolic-ODE PDE’s system which describes the evolution of the physical capital “k” and technological progress “A”, using a meshless method in one and two dimensional bounded domain with regular boundary. The well-known Solow model is extended by considering the spatial diffusion of both capital and technology. Moreover, we study the case in which no spatial diffusion of the technology progress occurs. For such models, we propound schemes based on the Generalized Finite Difference method and prove the convergence of the numerical solution to the continuous one. Several examples show the dynamics of the model for a wide range of parameters. These examples illustrate the accuary of the numerical method.Publicación On the numerical solution to space fractional differential equations using meshless finite differences(Elsevier, 2024-10-28) García, A.; Negreanu, M.; Ureña, Francisco; Vargas Ureña, Antonio ManuelWe derive a discretization of the Caputo and Riemann–Liouville spatial derivatives by means of the meshless Generalized Finite Difference Method, which is based on moving least squares. The conditional convergence of the method is proved and several examples over one dimensional irregular meshes are given.Publicación Solving a fully parabolic chemotaxis system with periodic asymptotic behavior using Generalized Finite Difference Method(Elsevier, 2020-11) Benito Muñoz, Juan J.; García, Ángel; Gavete, Luis; Negreanu, Mihaela; Ureña, Francisco; Vargas Ureña, Antonio ManuelThis work studies a parabolic-parabolic chemotactic PDE's system which describes the evolution of a biological population “U” and a chemical substance “V”, using a Generalized Finite Difference Method, in a two dimensional bounded domain with regular boundary. In a previous paper [12], the authors asserted global classical solvability and periodic asymptotic behavior for the continuous system in 2D. In this continuous work, a rigorous proof of the global classical solvability to the discretization of the model proposed in [12] is presented in two dimensional space. Numerical experiments concerning the convergence in space and in time, and long-time simulations are presented in order to illustrate the accuracy, efficiency and robustness of the developed numerical algorithms.Publicación An effective numeric method for different formulations of the elastic wave propagation problem in isotropic medium(Elsevier, 2021-08) Salete Casino, Eduardo; Vargas Ureña, Antonio Manuel; García, Ángel; Benito Muñoz, Juan J.; Ureña, Francisco; Ureña, MiguelThis paper shows how the Generalized Finite Difference Method allows the same schemes in differences to be used for different formulations of the wave propagation problem. These formulations present pros and cons, depending on the type of boundary and initial conditions at our disposal and also the variables we want to compute, while keeping additional calculations to a minimum. We obtain the explicit schemes of this meshless method for different possible formulations in finite differences of the problem. Criteria for stability and convergence of the schemes are given for each case. The study of the dispersion of the phase and group velocities presented in previuos paper of the authors is also completed here. We show the application of the propounded schemes to the wave propagation problem and the comparison of the efficiency, convenience and accuracy of the different formulations.Publicación On the numerical solution to a parabolic-elliptic system with chemotactic and periodic terms using Generalized Finite Differences(Elsevier, 2020-04) Benito Muñoz, Juan J.; García, Ángel; Gavete, Luis; Negreanu, Mihaela; Ureña, Francisco; Vargas Ureña, Antonio ManuelIn the present paper we propose the Generalized Finite Difference Method (GFDM) for numerical solution of a cross-diffusion system with chemotactic terms. We derive the discretization of the system using a GFD scheme in order to prove and illustrate that the uniform stability behavior/ convergence of the continuous model is also preserved for the discrete model. We prove the convergence of the explicit method and give the conditions of convergence. Extensive numerical experiments are presented to illustrate the accuracy, efficiency and robustness of the GFDM.