Publicación: Solving a fully parabolic chemotaxis system with periodic asymptotic behavior using Generalized Finite Difference Method
Cargando...
Fecha
2020-11
Autores
García, Ángel
Gavete, Luis
Negreanu, Mihaela
Ureña, Francisco
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Elsevier
Resumen
This work studies a parabolic-parabolic chemotactic PDE's system which describes the evolution of a biological population “U” and a chemical substance “V”, using a Generalized Finite Difference Method, in a two dimensional bounded domain with regular boundary. In a previous paper [12], the authors asserted global classical solvability and periodic asymptotic behavior for the continuous system in 2D. In this continuous work, a rigorous proof of the global classical solvability to the discretization of the model proposed in [12] is presented in two dimensional space. Numerical experiments concerning the convergence in space and in time, and long-time simulations are presented in order to illustrate the accuracy, efficiency and robustness of the developed numerical algorithms.
Descripción
This is a Submitted Manuscript of an article published by Elsevier in "Applied Numerical Mathematics Volume 157,Pages 356-371", available at:
https://doi.org/10.1016/j.apnum.2020.06.011
Este es el manuscrito enviado del artículo publicado por Elsevier en "Applied Numerical Mathematics Volume 157, Pages 356-371", disponible en línea: https://doi.org/10.1016/j.apnum.2020.06.011
Este es el manuscrito enviado del artículo publicado por Elsevier en "Applied Numerical Mathematics Volume 157, Pages 356-371", disponible en línea: https://doi.org/10.1016/j.apnum.2020.06.011
Categorías UNESCO
Palabras clave
Citación
J.J. Benito, A. García, L. Gavete, M. Negreanu, F. Ureña, A.M. Vargas (2020), Solving a fully parabolic chemotaxis system with periodic asymptotic behavior using Generalized Finite Difference Method, Applied Numerical Mathematics Volume 157, Pages 356-371. doi: https://doi.org/10.1016/j.apnum.2020.06.011
Centro
Facultades y escuelas::E.T.S. de Ingenieros Industriales
Departamento
Matemática Aplicada I