Publicación:
On the numerical solution to a parabolic-elliptic system with chemotactic and periodic terms using Generalized Finite Differences

Fecha
2020-04
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Elsevier
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
In the present paper we propose the Generalized Finite Difference Method (GFDM) for numerical solution of a cross-diffusion system with chemotactic terms. We derive the discretization of the system using a GFD scheme in order to prove and illustrate that the uniform stability behavior/ convergence of the continuous model is also preserved for the discrete model. We prove the convergence of the explicit method and give the conditions of convergence. Extensive numerical experiments are presented to illustrate the accuracy, efficiency and robustness of the GFDM.
Descripción
This is a Submitted Manuscript of an article published by Elsevier in "Engineering Analysis with Boundary Elements, 113, 181-190", available at: https://doi.org/10.1016/j.enganabound.2020.01.002
Este es el manuscrito enviado del artículo publicado por Elsevier en "Engineering Analysis with Boundary Elements, 113, 181-190", disponible en línea: https://doi.org/10.1016/j.enganabound.2020.01.002
Categorías UNESCO
Palabras clave
Chemotaxis models, Parabolic-elliptic systems, Generalized nite di erence method
Citación
Benito, García, Gavete, Negreanu, Ureña, & Vargas. (2020). On the numerical solution to a parabolic-elliptic system with chemotactic and periodic terms using Generalized Finite Differences. Engineering Analysis with Boundary Elements, 113, 181-190. https://doi.org/10.1016/J.ENGANABOUND.2020.01.002
Centro
Facultades y escuelas::E.T.S. de Ingenieros Industriales
Departamento
Matemática Aplicada I
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra