Publicación:
Numerical solution to a Parabolic-ODE Solow model with spatial diffusion and technology-induced motility

Cargando...
Miniatura
Fecha
2024-04-08
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
ScienceDirect
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
This work studies a parabolic-ODE PDE’s system which describes the evolution of the physical capital “k” and technological progress “A”, using a meshless method in one and two dimensional bounded domain with regular boundary. The well-known Solow model is extended by considering the spatial diffusion of both capital and technology. Moreover, we study the case in which no spatial diffusion of the technology progress occurs. For such models, we propound schemes based on the Generalized Finite Difference method and prove the convergence of the numerical solution to the continuous one. Several examples show the dynamics of the model for a wide range of parameters. These examples illustrate the accuary of the numerical method.
Descripción
This is an Accepted Manuscript of an article published by Elsevier in "Journal of Computational and Applied Mathematics, Volume 447, 2024, 115913", available at: https://doi.org/10.1016/j.cam.2024.115913. (https://www.sciencedirect.com/science/article/pii/S0377042724001638) Este es el manuscrito aceptado del artículo publicado por Elsevier en "Journal of Computational and Applied Mathematics, Volume 447, 2024, 115913", disponible en línea: https://doi.org/10.1016/j.cam.2024.115913. (https://www.sciencedirect.com/science/article/pii/S0377042724001638)
Categorías UNESCO
Palabras clave
Solow model, Generalized Finite Difference, Meshless method, Parabolic PDEs
Citación
N. Ureña, A.M. Vargas, Numerical solution to a Parabolic-ODE Solow model with spatial diffusion and technology-induced motility, Journal of Computational and Applied Mathematics, Volume 447, 2024, 115913, ISSN 0377-0427, https://doi.org/10.1016/j.cam.2024.115913
Centro
Facultades y escuelas::E.T.S. de Ingenieros Industriales
Departamento
Matemática Aplicada I
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra