Persona: Pinos Sánchez, María Elena
Cargando...
Dirección de correo electrónico
ORCID
0000-0002-5323-6602
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Pinos Sánchez
Nombre de pila
María Elena
Nombre
10 resultados
Resultados de la búsqueda
Mostrando 1 - 10 de 10
Publicación Physiological and brain alterations produced by high-fat diet in male and female rats can be modulated by increased levels of estradiol during critical periods of development(Taylor and Francis Online, 2017-07-11) Carrillo Urbano, Beatriz; Collado Guirao, Paloma; Díaz, Francisca; Chowen, Julie A.; Pérez Izquierdo, María Ángeles; Pinos Sánchez, María ElenaBackground: Overnutrition due to a high-fat diet (HFD) can increase the vulnerability of the metabolic system to maladjustments. Estradiol has an inhibitory role on food intake and this hormone has demonstrated to be a crucial organizer during brain development. Objective: Our aim was to determine whether increased levels of estradiol in the early postnatal period modulate the alterations in metabolism and brain metabolic circuits produced by overnutrition. Methods: Twenty-four male and 24 female Wistar rats were submitted to a HFD (34.9% fat) or a control diet (5% fat) from gestational day 6. From postnatal (P) 6 to P13, both control and HFD groups were administered a s.c. injection of vehicle or estradiol benzoate (0.4 mg/kg), resulting in eight experimental groups (n = 6 in each group). Body weight, food intake and subcutaneous, visceral, and brown fat pads were measured. Agouti-related peptide, neuropeptide Y, orexin, and proopiomelanocortin (POMC) were analyzed by quantitative real-time polymerase chain reaction assay and plasma estradiol levels were measured by ELISA. Results: Males fed a HFD showed an increase in body weight and the amount of visceral and subcutaneous fat, which was coincident with an increase in the number of kilocalories ingested. Neonatal estradiol treatment restored the body weight and subcutaneous fat of HFD males to control levels. Hypothalamic POMC mRNA levels in HFD females were increased with respect to control females. This increase was reverted with estradiol treatment during development. Discussion: HFD and estradiol treatment have different effects on males and females. Overnutrition affects physiological parameters, such as body weight, visceral, and subcutaneous fat content, in males, while females present alterations in hypothalamic POMC mRNA levels. Hence, the increase in estradiol levels during a period that is critical for the programing of the feeding system can modulate some of the alterations produced by the continuous intake of high-fat content food.Publicación G protein-coupled estrogen receptor immunoreactivity in the rat hypothalamus is widely distributed in neurons, astrocytes and oligodendrocytes, fluctuates during the estrous cycle and is sexually dimorphic(Karger International, 2021-06-29) Marraudino, Marilena; Carrillo Urbano, Beatriz; Bonaldo, Brigitta; Llorente, Ricardo; Campioli, Elia; Garate, Iciar; Pinos Sánchez, María Elena; Garcia Segura, Luis; Collado Guirao, Paloma; Grassi, DanielaIntroduction: The membrane-associated G protein-coupled estrogen receptor 1 (GPER) mediates the regulation by estradiol of arginine-vasopressin immunoreactivity in the supraoptic and paraventricular hypothalamic nuclei of female rats and is involved in the estrogenic control of hypothalamic regulated functions, such as food intake, sexual receptivity, and lordosis behavior. Objective: To assess GPER distribution in the rat hypothalamus. Methods: GPER immunoreactivity was assessed in different anatomical subdivisions of five selected hypothalamic regions of young adult male and cycling female rats: the arcuate nucleus, the lateral hypothalamus, the paraventricular nucleus, the supraoptic nucleus, and the ventromedial hypothalamic nucleus. GPER immunoreactivity was colocalized with NeuN as a marker of mature neurons, GFAP as a marker of astrocytes, and CC1 as a marker of mature oligodendrocytes. Results: GPER immunoreactivity was detected in hypothalamic neurons, astrocytes, and oligodendrocytes. Sex and regional differences and changes during the estrous cycle were detected in the total number of GPER-immunoreactive cells and in the proportion of neurons, astrocytes, and oligodendrocytes that were GPER-immunoreactive. Conclusions: These findings suggest that estrogenic regulation of hypothalamic function through GPER may be different in males and females and may fluctuate during the estrous cycle in females.Publicación Organizational Effects of Estrogens and Androgens on Estrogen and Androgen Receptor Expression in Pituitary and Adrenal Glands in Adult Male and Female Rats(Frontiers Media, 2022-06-22) Lagunas, Natalia; Fernández García, José Manuel; Blanco, Noemí; Ballesta, Antonio; Carrillo Urbano, Beatriz; Arevalo, Maria-Angeles; Collado Guirao, Paloma; Pinos Sánchez, María Elena; Grassi, DanielaSex steroid hormones, such as androgens and estrogens, are known to exert organizational action at perinatal periods and activational effects during adulthood on the brain and peripheral tissues. These organizational effects are essential for the establishment of biological axes responsible for regulating behaviors, such as reproduction, stress, and emotional responses. Estradiol (E2), testosterone, and their metabolites exert their biological action through genomic and non-genomic mechanisms, bounding to canonical receptors, such as estrogen receptor (ER)α, ERβ, and androgen receptor (AR) or membrane receptors, such as the G protein-coupled estrogen receptor (GPER), respectively. Expression of ERs and AR was found to be different between males and females both in the brain and peripheral tissues, suggesting a sex-dependent regulation of their expression and function. Therefore, studying the ERs and AR distribution and expression levels is key to understand the central and peripheral role of sex steroids in the establishment of sex-specific behaviors in males and females. We investigated the organizational effects of estrogens and androgens in the pituitary and adrenal glands of adult male and female rats. For this, selective blockade of AR with flutamide or 5α-reductase with finasteride or aromatase with letrozole during the first 5 days of life has been performed in male and female pups and then quantification of ERs and AR expression in both glands has been carried out in adulthood. Data show that inhibition of dihydrotestosterone (DHT) and E2 production during the first five postnatal days mainly decreases the ER expression in male to female values and AR expression in female to male levels in the pituitary gland and increases AR expression in female to male levels in the adrenal gland. In contrast, blocking the action of androgens differentially modulates the ERs in males and females and decreases AR in both males and females in both glands. Altogether, the results suggest that neonatal modifications of the androgen and estrogen pathways can potentially lead to permanent modifications of the neuroendocrine functions of the pituitary and adrenal glands in the adulthood of both sexes.Publicación Activity-based anorexia alters hypothalamic POMC and orexin populations in male rats(Elsevier, 2022-08-11) Sánchez Serrano, Ricardo; Carrillo Urbano, Beatriz; Fernández García, José Manuel; García Úbeda, Rocío; Paz Regidor, Ana María de; López Tolsa Gómez, Gabriela Eugenia; Vidal García, Pedro; Gutiérrez Ferre, Valeria Edith; Pellón Suárez de Puga, Ricardo; Collado Guirao, Paloma; Pinos Sánchez, María ElenaThe objective of this study was to investigate the orexin and POMC populations in the hypothalamic nuclei of male Wistar rats after the activity-based anorexia (ABA) procedure. Four groups were established based on food restriction and activity: activity (A), ABA, diet (D) and control (C). The ABA protocol consisted of free access to a running wheel for a period of 22 h and access to food for 1 h. When the animals in the ABA group reached the ABA criterion, were sacrificed, and their brains were collected and serially sectioned. The free-floating sections were processed for orexin and POMC immunostaining. The number of orexin A-ir cells in the perifornical-dorsomedial-hypothalamus continuum (PFD) and lateral hypothalamus (LH) and the number of POMC-ir cells in the arcuate nucleus (Arc) were estimated. Data on food intake, body weight and wheel turns were also analyzed. The ABA procedure caused a significant decrease in body weight along with a significant increase in activity. Moreover, at the end of the ABA procedure, the number of POMC-ir cells decreased in the Arc in the A group, and significantly more in the ABA group, and the number of orexin A-ir positive cells decreased in the LH in D and ABA groups. The differential decrease in POMC in the ABA group emphasizes the importance of the melanocortin system in the maintenance of ABA, but more research is needed to elucidate the involvement of this peptide in the mechanism that promotes and maintains anorexia nervosa and how increased activity may interact with all these processes.Publicación Prenatal Low-Protein and Low-Calorie Diets Differentially Alter Arcuate Nucleus Morphology in Newborn Male Rats(Frontiers Media, 2022-06) Blanco, Noemí; Fernández García, José Manuel; Carrillo Urbano, Beatriz; Ballesta, Antonio; García Úbeda, Rocío; Collado Guirao, Paloma; Pinos Sánchez, María ElenaBackground: Malnutrition during the early stages of development produces alterations that can compromise the functioning of the hypothalamic circuits that regulate food intake. The purpose of this study is to analyze the effects that a low-protein and low-calorie diet has on the morphology of the arcuate nucleus (ARC) of the hypothalamus in newborn male and female rats. Methods: On gestational day 6 (G6), six pregnant rats were divided into two groups. One group was made up of three pregnant rats, which were fed ad libitum with a control diet (20% casein), and the other one was made up of three pregnant rats, which were fed ad libitum with a low-protein diet (8% casein) and 30% of a calorie-restricted diet. On the day of birth, pups were sacrificed, resulting in four experimental groups: control male, control female, low-protein and low-calorie diet male, and low-protein and low-calorie diet female (n = 5 in each group). The volume and number of neurons, together with the neuronal density and number of apoptotic cells, were measured. Results: Males on a low-protein and low-calorie diet showed a significant increase in the number of neurons and in the neuronal density of the ARC with regard to the rest of the groups studied. These increases were also reflected in the posterior part of the nucleus. Although the existence of sexual dimorphism was not detected in any of the parameters studied in the control groups, the number of neurons and neuronal density showed differences between males and females fed with a low-protein and low-calorie diets due to the increase in the number of neurons shown by the male. No significant differences were found in the number of apoptotic cells. Conclusion: Our results show that a low-protein and low-calorie diet during the prenatal stage produces alterations in the ARC of the hypothalamus in newborn animals and, more importantly, that the effects of malnutrition are evident in males but not in females. Therefore, it is essential to follow a balanced diet during the early stages of life to ensure optimal development of the neural circuits that regulate eating.Publicación Estrogen receptor beta and G protein-coupled estrogen receptor 1 are involved in the acute estrogenic regulation of arginine-vasopressin immunoreactive levels in the supraoptic and paraventricular hypothalamic nuclei of female rats(Elsevier, 2019-06-01) Lagunas, Natalia; Marraudino, Marilena; Amorim, Miguel de; Pinos Sánchez, María Elena; Collado Guirao, Paloma; Panzica, GianCarlo; Garcia Segura, Luis ; Grassi, DanielaThe ovarian hormone 17β-estradiol is known to regulate the release, expression and immunoreactivity of arginine-vasopressin (AVP) in the supraoptic and paraventricular hypothalamic nuclei of rodents. Previous studies have shown that estrogen receptor α is involved in the effects of chronic estradiol administration on arginine-vasopressin immunoreactivity in the female rat hypothalamus. In this study we have examined the effect of an acute administration of estradiol or specific agonists for estrogen receptors α, β and G protein-coupled estrogen receptor 1 on the immunoreactivity of arginine-vasopressin in the hypothalamus of adult ovariectomized female rats. Acute estradiol administration resulted in a significant decrease in the number of arginine-vasopressin immunoreactive neurons in the supraoptic and paraventricular nuclei after 24 h. The effects of the specific estrogen receptors agonists suggest that the action of estradiol on arginine-vasopressin immunoreactivity is mediated in the supraoptic nucleus by G protein-coupled estrogen receptor 1 and in the paraventricular nucleus by both estrogen receptor β and G protein-coupled estrogen receptor 1. Thus, in contrast to previous studies on the effect of chronic estrogenic treatments, the present findings suggest that estrogen receptor β and G protein-coupled estrogen receptor 1 mediate the acute effects of estradiol on arginine-vasopressin immunoreactivity in the hypothalamus of ovariectomized rats.Publicación Relationship between autism spectrum disorder and pesticides: A systematic review of human and preclinical models(MDPI, 2021-05-03) Biosca Brull, Judit; Pérez Fernández, Cristian; Mora, Santiago; Carrillo Urbano, Beatriz; Pinos Sánchez, María Elena; Maria Conejo, Nelida; Collado Guirao, Paloma; Arias, Jorge L.; Martín Sánchez, Fernando; Sánchez Santed, Fernando; Colomina, Maria TeresaAutism spectrum disorder (ASD) is a complex set of neurodevelopmental pathologies characterized by impoverished social and communicative abilities and stereotyped behaviors. Although its genetic basis is unquestionable, the involvement of environmental factors such as exposure to pesticides has also been proposed. Despite the systematic analyses of this relationship in humans, there are no specific reviews including both human and preclinical models. The present systematic review summarizes, analyzes, and discusses recent advances in preclinical and epidemiological studies. We included 45 human and 16 preclinical studies. These studies focused on Organophosphates (OP), Organochlorine (OC), Pyrethroid (PT), Neonicotinoid (NN), Carbamate (CM), and mixed exposures. Preclinical studies, where the OP Chlorpyrifos (CPF) compound is the one most studied, pointed to an association between gestational exposure and increased ASD-like behaviors, although the data are inconclusive with regard to other ages or pesticides. Studies in humans focused on prenatal exposure to OP and OC agents, and report cognitive and behavioral alterations related to ASD symptomatology. The results of both suggest that gestational exposure to certain OP agents could be linked to the clinical signs of ASD. Future experimental studies should focus on extending the analysis of ASD-like behaviors in preclinical models and include exposure patterns similar to those observed in human studies.Publicación Relationship between prenatal or postnatal exposure to pesticides and obesity: a systematic review(MDPI, 2021-07-04) Pinos Sánchez, María Elena; Carrillo Urbano, Beatriz; Merchán, Ana; Biosca Brull, Judit; Pérez Fernández, Cristian; Colomina, María Teresa; Sánchez Santed, Fernando; Martín Sánchez, Fernando; Collado Guirao, Paloma; Arias, Jorge L.; Conejo, Nélida M.In recent years, the worldwide prevalence of overweight and obesity among adults and children has dramatically increased. The conventional model regarding the onset of obesity is based on an imbalance between energy intake and expenditure. However, other possible environmental factors involved, such as the exposure to chemicals like pesticides, cannot be discarded. These compounds could act as endocrine-disrupting chemicals (EDC) that may interfere with hormone activity related to several mechanisms involved in body weight control. The main objective of this study was to systematically review the data provided in the scientific literature for a possible association between prenatal and postnatal exposure to pesticides and obesity in offspring. A total of 25 human and 9 animal studies were analyzed. The prenatal, perinatal, and postnatal exposure to organophosphate, organochlorine, pyrethroid, neonicotinoid, and carbamate, as well as a combined pesticide exposure was reviewed. This systematic review reveals that the effects of pesticide exposure on body weight are mostly inconclusive, finding conflicting results in both humans and experimental animals. The outcomes reviewed are dependent on many factors, including dosage and route of administration, species, sex, and treatment duration. More research is needed to effectively evaluate the impact of the combined effects of different pesticides on human health.Publicación Influence of early maternal separation on susceptibility to the activity-based anorexia model in male and female Sprague Dawley rats(Elsevier, 2022-11) Kojo Morgan, Godstime Stephen; Mata, Yolanda; Carrillo Urbano, Beatriz; Pellón Suárez de Puga, Ricardo; Collado Guirao, Paloma; Gotti, Stefano; Pinos Sánchez, María ElenaA principal animal paradigm employed in Anorexia Nervosa (AN) study is the activity-based anorexia (ABA) model. The model's efficacy in recapitulating the core features of AN in humans allows for the study of the parameters involved in the disorder. The current study examined the susceptibility to the ABA protocol in the presence of a significant stressor (maternal separation) in male and female Sprague Dawley rats. More importantly, we analysed the sex-differences on activity levels during different periods of the ABA protocol to determine the period(s) influencing the most pathological weight loss. Both components of the ABA protocol contributed to the subjects’ bodyweight loss. Stress in the first two weeks of development conferred a protective effect in males. Time spent and activity levels on the running wheel were higher in females compared to males. Hyperactivity in ABA subjects was observed during the food-anticipatory activity (FAA) and postprandial activity in males and during the FAA and nocturnal activity periods in females. This study aids in understanding the effect of intensity of activity during specific periods on the pathological weight loss in ABA rats. These observations are informative for therapies aimed at ameliorating body mass index in AN patients.Publicación Blocking of Estradiol Receptors ERα, ERβ and GPER During Development, Differentially Alters Energy Metabolism in Male and Female Rats(Elsevier, 2020) Díaz González, Francisca; Chowen, Julie A.; Grassi, Daniela; Pinos Sánchez, María Elena; Carrillo Urbano, Beatriz; Collado Guirao, PalomaEstradiol not only participates in the regulation of energy metabolism in adulthood, but also during the first stages of life as it modulates the alterations induced by under- and over-nutrition. The objectives of the present study were to determine: 1) If estradiol is involved in the normal programming of energy metabolism in rats; 2) If there is a specific window of time for this programming and 3) If males and females are differentially vulnerable to the action of this hormone. Estrogen receptors (ER) α, ERβ and GPER were blocked by their specific antagonists MPP, PHTPP and G15, respectively, from postnatal day (P) 1 (the day of birth) to P5 or from P5 to P13. Physiological parameters such as body weight, fat depots and caloric intake were then analysed at P90. Hypothalamic AgRP, POMC, MC4R, ERα, ERβ and GPER mRNA levels and plasma levels of estradiol, were also studied. We found that blocking ER receptors from P5 to P13 significantly decreases long-term body weight in males and hypothalamic POMC mRNA levels in females. The blocking of ERs from P1 to P5 only affected plasma estradiol levels in females. The present results indicate programming actions of estradiol from P5 to P13 on body weight in male and POMC expression in female rats and emphasize the importance of including both sexes in metabolic studies. It is necessary to unravel the mechanisms that underlie the actions of estradiol on food intake, both during development and in adulthood, and to determine how this programming differentially takes place in males and females.