Persona:
Heradio Gil, Rubén

Cargando...
Foto de perfil
Dirección de correo electrónico
ORCID
0000-0002-7131-0482
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Heradio Gil
Nombre de pila
Rubén
Nombre

Resultados de la búsqueda

Mostrando 1 - 10 de 10
  • Publicación
    The Ball and Beam System: A Case Study of Virtual and Remote Lab Enhancement With Moodle
    (IEEE (Institute of Electrical and Electronics Engineers), 2015-06-10) Torre Cubillo, Luis de la; Guinaldo Losada, María; Heradio Gil, Rubén; Dormido Canto, Sebastián
    Web-based labs are key tools for distance education that help to illustrate scientific phenomena, which require costly or difficult-to-assemble equipment. Easy Java Simulations (EJS) is an authoring tool that speeds up the creation of these kind of labs. An excellent proof of the EJS potential is the open source physics (OSP) repository, which hosts hundreds of free EJS labs. Learning management systems, such as Moodle, provide social contexts where students interact with each other. The work described in this paper looks for the synergy of both tools, EJS and Moodle, by supporting the deployment of EJS labs into Moodle and thus enriching them with social features (e.g., chat, forums, and videoconference). To test this approach, the authors have created the ball and beam lab, which helps students of automatic control engineering to train different advanced techniques (robust, fuzzy, and reset control), and compare their performance in relation to a conventional proportional-integral-derivative control.
  • Publicación
    The photoelectric effect and study of the diffraction of light: Two new experiments in UNILabs virtual and remote laboratories network
    (Società Italiana di Fisica, 2016-02-12) Sánchez Fernández, Juan Pedro; Sáenz Valiente, Jacobo; Torre Cubillo, Luis de la; Carreras, Carmen; Yuste, Manuel; Heradio Gil, Rubén; Dormido Canto, Sebastián
    This work describes two experiments: “study of the diffraction of light: Fraunhofer approximation” and “the photoelectric effect”. Both of them count with a virtual, simulated, version of the experiment as well as with a real one which can be operated remotely. The two previous virtual and remote labs (built using Easy Java(script) Simulations) are integrated in UNILabs, a network of online interactive laboratories based on the free Learning Management System Moodle. In this web environment, students can find not only the virtual and remote labs but also manuals with related theory, the user interface description for each application, and so on.
  • Publicación
    Virtual and Remote Labs in Control Education: a Survey
    (Elsevier, 2016-11-14) Heradio Gil, Rubén; Torre Cubillo, Luis de la; Dormido Canto, Sebastián
    Virtual and remote labs have been around for almost twenty years and while they have been constantly gaining popularity since their appearance, there are still many people in the control education community who either do not know many details about them or do not know them at all. What are their benefits? Which examples of virtual and remote labs for control education can be found in the Internet and how spread and popular are they? What are the current trends and issues in the implementation and deployment of these tools? And the future ones? These and others are some of the questions we answer in this paper, trying to bring the attention of the control education community to these tools which, we believe, are meant to have an increasing importance and relevance for the 21st century students.
  • Publicación
    Standardizing course assessment in competency-based higher education: an experience report
    (Frontiers Media, 2018-06-18) Vargas, Hector; Arredondo, Emanuel; Heradio Gil, Rubén; Torre Cubillo, Luis de la
    We examine the implementation of Competency-Based Education (CBE) at the Pontifical Catholic University of Valpara´ıso (PUCV) in Chile, focusing on the challenges associated with assessment methods in measuring students’ competencies accurately. To address these issues, we first introduce the Competency Assessment and Monitoring (C-A&M) model, which aims to standardize and improve course evaluation. Then, two complementary studies are reported: a within-groups design involving 20 Engineering courses and a between-groups design assessing the perceptions of 109 instructors across various faculties, including Law, Philosophy, and Education. Findings indicate that CBE is not yet fully realized at PUCV, with considerable room for improvement in evaluation strategies, alignment of learning objectives with competencies, and synchronization of training activities. However, the implementation of the C-A&M model led to significant enhancements in these areas, providing evidence of its effectiveness in advancing CBE practices.
  • Publicación
    Improving the accuracy of COPLIMO to estimate the payoff of a software product line
    (Elsevier, 2012-07) Heradio Gil, Rubén; Fernández Amoros, David José; Torre Cubillo, Luis de la; Alberto Perez Garcia-Plaz
    Software product line engineering pursues the efficient development of families of similar products. COPLIMO is an economic model that relies on COCOMO II to estimate the benefits of adopting a product line approach compared to developing the products one by one. Although COPLIMO is an ideal economic model to support decision making on the incremental development of a product line, it makes some simplifying assumptions that may produce high distortions in the estimates (e.g., COPLIMO takes for granted that all the products have the same size). This paper proposes a COPLIMO reformulation that avoids such assumptions and, consequently, improves the accuracy of the estimates. To support our proposal, we present an algorithm that infers the additional information that our COPLIMO reformulation requires from feature diagrams, which is a widespread notation to model the domain of a product line.
  • Publicación
    Providing collaborative support to virtual and remote laboratories
    (IEEE (Institute of Electrical and Electronics Engineers), 2013-06-04) Torre Cubillo, Luis de la; Heradio Gil, Rubén; Jara, Carlos A.; Sanchez, Jose; Dormido Canto, Sebastián; Torres, Fernando; Candelas, Francisco A.
    Virtual and remote laboratories (VRLs) are e-learning resources that enhance the accessibility of experimental setups providing a distance teaching framework which meets the student's hands-on learning needs. In addition, online collaborative communication represents a practical and a constructivist method to transmit the knowledge and experience from the teacher to students, overcoming physical distance and isolation. This paper describes the extension of two open source tools: (1) the learning management system Moodle, and (2) the tool to create VRLs Easy Java Simulations (EJS). Our extension provides: (1) synchronous collaborative support to any VRL developed with EJS (i.e., any existing VRL written in EJS can be automatically converted into a collaborative lab with no cost), and (2) support to deploy synchronous collaborative VRLs into Moodle. Using our approach students and/or teachers can invite other users enrolled in a Moodle course to a real-time collaborative experimental session, sharing and/or supervising experiences at the same time they practice and explore experiments using VRLs.
  • Publicación
    Physics Experiments at the UNEDLabs Portal
    (International Federation of Engineering Education Societies (IFEES), 2012-01-22) Dormido Canto, Sebastián; Sánchez, José; Torre Cubillo, Luis de la; Heradio Gil, Rubén; Carreras, Carmen; Sánchez Fernández, Juan Pedro; Yuste, Manuel
    UNEDLabs is a web portal based on a free, modern, open source, and well-known learning management system: Moodle. This portal joins two theme networks of virtual and remote laboratories (one for Control Engineering and another one for Physics, named AutomatL@bs and FisL@bs, respectively) together. AutomatL@bs has been operative for five years now. Following AutomatL@bsâ?? scheme, FisL@bs was created as a network of remote and virtual laboratories for physics university education via the Internet to offer students the possibility of performing hands-on experiences in different fields of physics in two ways: simulation and real remote operation. Now, both FisL@bs and AutomatL@bs join together (while maintaining their independency) into an unique new web portal called UNEDLabs. This work focuses on this new web environment and gives a detailed account of a novel way in Physics to let distance learning students gain practical experience autonomously. This paper explains how the new portal works and the software tools used for creating it. In addition, it also describes the physics experiments which are already operative.
  • Publicación
    Automated assessment and monitoring support for competency-based courses
    (IEEE Xplore, 2019-03-28) Vargas, Héctor; Heradio Gil, Rubén; Chacón, Jesús; Torre Cubillo, Luis de la; Farias, Gonzalo; Galán, Daniel; Dormido Canto, Sebastián
    Competency-based education is becoming increasingly adopted by higher education institutions all over the world. This paper presents a framework that assists instructors in this pedagogical paradigm and its corresponding open-source implementation. The framework supports the formal definition of competency assessment models and the students' evaluation under these models. It also provides distinct learning analytics for identifying course shortcomings and validating corrective actions instructors have introduced in a course. Finally, this paper reports the benefits of applying our framework to an engineering course at the Pontifical Catholic University, Valparaíso, Chile for three years.
  • Publicación
    Open-source hardware in education: A systematic mapping study
    (IEEE, 2018-11-16) Heradio Gil, Rubén; Chacón, Jesús; Vargas, Héctor; Galán, Daniel; Sáenz Valiente, Jacobo; Torre Cubillo, Luis de la
    The open-source hardware movement is becoming increasingly popular due to the emergence of successful low-cost technologies, such as Arduino and Raspberry Pi, and thanks to the community of makers that actively share their creations to be freely studied, modified, and re-distributed. Numerous authors have proposed distinct ways to seize this approach for accomplishing a variety of learning goals: enabling scholars to explore scientific concepts, promoting students’ creativity, helping them to be more fluent and expressive with new technologies, and so on. This paper reports a systematic mapping study that overviews the literature on open-source hardware in education by analyzing and classifying 676 publications. The results of our work provide: 1) guidance on the published material (identifying the most relevant papers, publication sources, institutions, and countries); 2) information about the pedagogical uses of open-source hardware (showing its main educational goals, stages, and topics where it is principally applied); and 3) directions for future research.
  • Publicación
    The experiment editor: supporting inquiry-based learning with virtual labs
    (IOP Science, 2017-03-08) Galán, Daniel; Heradio Gil, Rubén; Torre Cubillo, Luis de la; Dormido Canto, Sebastián
    Inquiry-based learning is a pedagogical approach where students are motivated to pose their own questions when facing problems or scenarios. In physics learning, students are turned into scientists who carry out experiments, collect and analyze data, formulate and evaluate hypotheses, and so on. Lab experimentation is essential for inquiry-based learning, yet there is a drawback with traditional hands-on labs in the high costs associated with equipment, space, and maintenance staff. Virtual laboratories are helpful to reduce these costs. This paper enriches the virtual lab ecosystem by providing an integrated environment to automate experimentation tasks. In particular, our environment supports: (i) scripting and running experiments on virtual labs, and (ii) collecting and analyzing data from the experiments. The current implementation of our environment supports virtual labs created with the authoring tool Easy Java/Javascript Simulations. Since there are public repositories with hundreds of freely available labs created with this tool, the potential applicability to our environment is considerable.