Persona:
Moreno Álvarez, Sergio

Cargando...
Foto de perfil
Dirección de correo electrónico
ORCID
0000-0002-1858-9920
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Moreno Álvarez
Nombre de pila
Sergio
Nombre

Resultados de la búsqueda

Mostrando 1 - 6 de 6
  • Publicación
    Evaluación de Rendimiento del Entrenamiento Distribuido de Redes Neuronales Profundas en Plataformas Heterogéneas
    (Universidad de Extremadura, 2019) Moreno Álvarez, Sergio; Paoletti, Mercedes Eugenia; Haut, Juan Mario; Rico Gallego, Juan Antonio; Plaza, Javier; Díaz Martín, Juan Carlos; Vega Rodriguez, Miguel ángel; Plaza Miguel, Antonio J.; https://orcid.org/0000-0003-1030-3729; https://orcid.org/0000-0001-6701-961X; https://orcid.org/0000-0002-4264-7473; https://orcid.org/0000-0002-8908-1606; https://orcid.org/0000-0002-8435-3844
    Asynchronous stochastic gradient descent es una tecnica de optimizacion comunmente utilizada en el entrenamiento distribuido de redes neuronales profundas. En distribuciones basadas en particionamiento de datos, se entrena una replica del modelo en cada unidad de procesamiento de la plataforma, utilizando conjuntos de muestras denominados mini-batches. Este es un proceso iterativo en el que al nal de cada mini-batch, las replicas combinan los gradientes calculados para actualizar su copia local de los parametros. Sin embargo, al utilizar asincronismo, las diferencias en el tiempo de entrenamiento por iteracion entre replicas provocan la aparicion del staleness, esto es, las replicas progresan a diferente velocidad y en el entrenamiento de cada replica se utiliza una vers on no actualizada de los parametros. Un alto gradde staleness tiene un impacto negativo en la precision del modelo resultante. Ademas, las plataformas de computacion de alto rendimiento suelen ser heterogeneas, compuestas por CPUs y GPUs de diferentes capacidades, lo que agrava el problema de staleness. En este trabajo, se propone aplicar t ecnicas de equilibrio de carga computacional, bien conocidas en el campo de la Computaci on de Altas Prestaciones, al entrenamiento distribuido de modelos profundos. A cada r eplica se asignar a un n umero de mini-batches en proporci on a su velocidad relativa. Los resultados experimentales obtenidos en una plataforma hete-rog enea muestran que, si bien la precisi on se mantiene constante, el rendimiento del entrenamiento aumenta considerablemente, o desde otro punto de vista, en el mismo tiempo de entrenamiento, se alcanza una mayor precisi on en las estimaciones del modelo. Discutimos las causas de tal incremento en el rendimiento y proponemos los pr oximos pasos para futuras investigaciones.
  • Publicación
    Estimación Automática del Coste de Comunicación de Aplicaciones Paralelas en Plataformas Heterogéneas
    (Universidad Extremadura, 2018) Moreno Álvarez, Sergio; Rico Gallego, Juan A.; Díaz Martín, Juan Carlos; https://orcid.org/0000-0002-4264-7473; https://orcid.org/0000-0002-8435-3844
    Optimizar el tiempo de ejecución de aplicaciones paralelas en plataformas heterogéneas de altas prestaciones es un problema complejo. Estas aplicaciones cient´ıficas normalmente se componen de kernels que implementan algoritmos como la multiplicación de matrices, ecuaciones en derivadas parciales o Transformadas de Fourier. Los kernels son ejecutados por los procesos desplegados en los diferentes recursos de cómputo de una plataforma, por ejemplo, en procesadores multi-core o aceleradores (GPUs, Xeon PHIs, etc.). El volumen de datos del kernel se distribuye entre los procesos de forma proporcional a su capacidad de cómputo, de forma que se equilibra la carga computacional global. Este equilibrado de carga no homogéneo tiene un impacto importante en el coste de las comunicaciones. La optimización del coste de las comunicaciones de éstas aplicaciones se aborda habitualmente mediante pruebas exhaustivas en la plataforma destino. Sin embargo, estas pruebas consumen recursos y tiempo, y a menudo se basan en la extrapolación de los resultados obtenidos con la ejecución de una versión reducida de la aplicación en la plataforma. Los Modelos Anal´ıticos de Rendimiento de Comunicaciones ofrecen una alternativa factible y prometedora en este sentido. Estos modelos representan el coste de las comunicaciones de un kernel en una plataforma heterogénea, ofreciendo una estimación precisa de su tiempo de comunicación de forma no invasiva, esto es, sin utilizar recursos de cómputo HPC en la estimación. Este trabajo contribuye ofreciendo una herramienta de estimación que permite representar y evaluar expresiones de coste de comunicaciones que siguen el modelo t- Lop. Adem´as, permite incluir el c´alculo de coste de las comunicaciones de forma autom´atica en algoritmos de particionamiento y optimización de comunicaciones. En este documento se proporcionan ejemplos tanto de uso b´asico como avanzado. Se incluyen tres casos de ejemplo de modelado de comunicaciones en kernels representativos utilizando la herramienta: la solución de una ecuación diferencial utilizando la técnica de elementos finitos, un algoritmo paralelo de multiplicación de matrices densas, y una simulación N-Body. Estos kernels utilizan diferentes patrones de comunicación y particionamiento del espacio de datos.
  • Publicación
    Deep Robust Hashing Using Self-Distillation for Remote Sensing Image Retrieval
    (IEEE, 2024) han,lirong; Paoletti, Mercedes Eugenia; Moreno Álvarez, Sergio; Haut, Juan Mario; Plaza, Antonio; https://orcid.org/0000-0002-8613-7037; https://orcid.org/0000-0003-1030-3729; https://orcid.org/0000-0001-6701-961X; https://orcid.org/0000-0002-9613-1659
    This paper presents a novel self-distillation based deep robust hash for fast remote sensing (RS) image retrieval. Specifically, there are two primary processes in our proposed model: teacher learning (TL) and student learning (SL). Two transformed samples are produced from one sample image through nuanced and signalized transformations, respectively. Transformed samples are fed into both the TL and the SL flows. To reduce discrepancies in the processed samples and guarantee a consistent hash code, the parameters are shared by the two modules during the training stage. Then, a resilient module is employed to enhance the image features in order to ensure more dependable hash code production. Lastly, a three-component loss function is developed to train the entire model. Comprehensive experiments are conducted on two common RS datasets: UCMerced and AID. The experimental results validate that the proposed method has competitive performance against other RS image hashing methods.
  • Publicación
    Correlation-Aware Averaging for Federated Learning in Remote Sensing Data Classification
    (IEEE, 2024) Moreno Álvarez, Sergio; han, lirong; Paoletti, Mercedes Eugenia; Haut, Juan Mario; https://orcid.org/0000-0002-8613-7037; https://orcid.org/0000-0003-1030-3729; https://orcid.org/0000-0001-6701-961X
    The increasing volume of remote sensing (RS) data offers substantial benefits for the extraction and interpretation of features from these scenes. Indeed, the detection of distinguishing features among captured materials and objects is crucial for classification purposes, such as in environmental monitoring applications. In these algorithms, the classes characterized by lower correlation often exhibit more distinct and discernible features, facilitating their differentiation in a straightforward manner. Nevertheless, the rise of Big Data provides a wide range of data acquired through multiple decentralized devices, where its susceptibility to be shared among various users or clients presents challenges in safeguarding privacy. Meanwhile, global features for similar classes are required to be learned for generalization purposes in the classification process. To address this, federated learning (FL) emerges as a privacy efficient decentralized solution. Firstly, in such scenarios, proprietary data is held by individual clients participating in the training of a global model. Secondly, clients may encounter challenges in identifying features that are more distinguishable within the data distributions of other clients. In this study, in order to handle these challenges, a novel methodology is proposed that considers the least correlated classes (LCCs) included in each client data distribution. This strategy exploits the distinctive features between classes, thereby enhancing performance and generalization ability in a secure and private environment.
  • Publicación
    Optimizing Distributed Deep Learning in Heterogeneous Computing Platforms for Remote Sensing Data Classification
    (IEEE, 2022) Moreno Álvarez, Sergio; Paoletti, Mercedes Eugenia; Rico Gallego, Juan Antonio; Cavallaro, Gabriele; Haut, Juan M.; https://orcid.org/0000-0003-1030-3729; https://orcid.org/0000-0002-4264-7473; https://orcid.org/0000-0002-3239-9904; https://orcid.org/0000-0001-6701-961X
    Applications from Remote Sensing (RS) unveiled unique challenges to Deep Learning (DL) due to the high volume and complexity of their data. On the one hand, deep neural network architectures have the capability to automatically ex-tract informative features from RS data. On the other hand, these models have massive amounts of tunable parameters, re-quiring high computational capabilities. Distributed DL with data parallelism on High-Performance Computing (HPC) sys-tems have proved necessary in dealing with the demands of DL models. Nevertheless, a single HPC system can be al-ready highly heterogeneous and include different computing resources with uneven processing power. In this context, a standard data parallelism strategy does not partition the data efficiently according to the available computing resources. This paper proposes an alternative approach to compute the gradient, which guarantees that the contribution to the gradi-ent calculation is proportional to the processing speed of each DL model's replica. The experimental results are obtained in a heterogeneous HPC system with RS data and demon-strate that the proposed approach provides a significant training speed up and gain in the global accuracy compared to one of the state-of-the-art distributed DL framework.
  • Publicación
    Deep Attention-Driven HSI Scene Classification Based on Inverted Dot-Product
    (Institute of Electrical and Electronics Engineers Inc., 2022) Paoletti, Mercedes Eugenia; Tao, Xuanwen; han, lirong; Wu, Zhaoyue; Moreno Álvarez, Sergio; Haut, Juan M.; https://orcid.org/0000-0003-1030-3729; https://orcid.org/0000-0003-1093-0079; https://orcid.org/0000-0002-8613-7037; https://orcid.org/0000-0002-6797-2440; https://orcid.org/0000-0001-6701-961X
    Capsule networks have been a breakthrough in the field of automatic image analysis, opening a new frontier in the art for image classification. Nevertheless, these models were initially designed for RGB images and naively applying these techniques to remote sensing hyperspectral images (HSI) may lead to sub-optimal behaviour, blowing up the number of parameters needed to train the model or not correctly modeling the spectral relations between the different layers of the scene. To overcome this drawback, this work implements a new capsule-based architecture with attention mechanism to improve the HSI data processing. The attention mechanism is applied during the concurrent iterative routing procedure through an inverted dot-product attention