Publicación:
Deep Attention-Driven HSI Scene Classification Based on Inverted Dot-Product

Cargando...
Miniatura
Fecha
2022
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/restrictedAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Institute of Electrical and Electronics Engineers Inc.
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
Capsule networks have been a breakthrough in the field of automatic image analysis, opening a new frontier in the art for image classification. Nevertheless, these models were initially designed for RGB images and naively applying these techniques to remote sensing hyperspectral images (HSI) may lead to sub-optimal behaviour, blowing up the number of parameters needed to train the model or not correctly modeling the spectral relations between the different layers of the scene. To overcome this drawback, this work implements a new capsule-based architecture with attention mechanism to improve the HSI data processing. The attention mechanism is applied during the concurrent iterative routing procedure through an inverted dot-product attention
Descripción
The registered version of this article, first published in “Institute of Electrical and Electronics Engineers Inc, 2022", is available online at the publisher's website: IEEE, https://doi.org/10.1109/IGARSS46834.2022.9883028 La versión registrada de este artículo, publicado por primera vez en “Institute of Electrical and Electronics Engineers Inc, 2022", está disponible en línea en el sitio web del editor: IEEE, https://doi.org/10.1109/IGARSS46834.2022.9883028
Categorías UNESCO
Palabras clave
Art, Computational modeling, Computer architecture, Routing, Data processing, Iterative methods, Image classification
Citación
M. E. Paoletti, X. Tao, L. Han, Z. Wu, S. Moreno-Álvarez and J. M. Haut, "Deep Attention-Driven HSI Scene Classification Based on Inverted Dot-Product," IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022, pp. 1380-1383, doi: 10.1109/IGARSS46834.2022.9883028
Centro
Facultades y escuelas::E.T.S. de Ingeniería Informática
Departamento
Lenguajes y Sistemas Informáticos
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra