Publicación:
Correlation-Aware Averaging for Federated Learning in Remote Sensing Data Classification

Cargando...
Miniatura
Fecha
2024
Autores
han, lirong
Paoletti, Mercedes Eugenia
Haut, Juan Mario
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/restrictedAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
IEEE
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
The increasing volume of remote sensing (RS) data offers substantial benefits for the extraction and interpretation of features from these scenes. Indeed, the detection of distinguishing features among captured materials and objects is crucial for classification purposes, such as in environmental monitoring applications. In these algorithms, the classes characterized by lower correlation often exhibit more distinct and discernible features, facilitating their differentiation in a straightforward manner. Nevertheless, the rise of Big Data provides a wide range of data acquired through multiple decentralized devices, where its susceptibility to be shared among various users or clients presents challenges in safeguarding privacy. Meanwhile, global features for similar classes are required to be learned for generalization purposes in the classification process. To address this, federated learning (FL) emerges as a privacy efficient decentralized solution. Firstly, in such scenarios, proprietary data is held by individual clients participating in the training of a global model. Secondly, clients may encounter challenges in identifying features that are more distinguishable within the data distributions of other clients. In this study, in order to handle these challenges, a novel methodology is proposed that considers the least correlated classes (LCCs) included in each client data distribution. This strategy exploits the distinctive features between classes, thereby enhancing performance and generalization ability in a secure and private environment.
Descripción
The registered version of this article, first published in “IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium", is available online at the publisher's website: IEEE, https://doi.org/10.1109/IGARSS53475.2024.10641628 La versión registrada de este artículo, publicado por primera vez en “IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium", está disponible en línea en el sitio web del editor: IEEE, https://doi.org/10.1109/IGARSS53475.2024.10641628
Categorías UNESCO
Palabras clave
Training, Adaptation models, Privacy, Accuracy, Federated learning, Neural networks, Feature extraction
Citación
S. Moreno-Álvarez, L. Han, M. E. Paoletti and J. M. Haut, "Correlation-Aware Averaging for Federated Learning in Remote Sensing Data Classification," IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 2024, pp. 8708-8711, doi: 10.1109/IGARSS53475.2024.10641628
Centro
Facultades y escuelas::E.T.S. de Ingeniería Informática
Departamento
Lenguajes y Sistemas Informáticos
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra