Publicación: Maximizing the probability of visiting a set infinitely often for a Markov decision process with Borel state and action spaces
dc.contributor.author | François Dufour | |
dc.contributor.author | Prieto Rumeau, Tomás | |
dc.contributor.orcid | https://orcid.org/0000-0002-8062-1346 | |
dc.date.accessioned | 2025-02-05T11:57:19Z | |
dc.date.available | 2025-02-05T11:57:19Z | |
dc.date.issued | 2024 | |
dc.description | This is the Accepted Manuscript of an article published by Cambridge University Press in Journal of Applied Probability. 2024, available online: https://doi.org/10.1017/JPR.2024.25 Este es el manuscrito aceptado de un artículo publicado por Cambridge University Press en Journal of Applied Probability. 2024, disponible en línea: https://doi.org/10.1017/JPR.2024.25 | |
dc.description.abstract | We consider a Markov control model with Borel state space, metric compact action space, and transitions assumed to have a density function with respect to some probability measure satisfying some continuity conditions. We study the optimization problem of maximizing the probability of visiting some subset of the state space infinitely often, and we show that there exists an optimal stationary Markov policy for this problem. We endow the set of stationary Markov policies and the family of strategic probability measures with adequate topologies (namely, the narrow topology for Young measures and the ws∞ -topology, respectively) to obtain compactness and continuity properties, which allow us to obtain our main results. | en |
dc.description.version | versión final | |
dc.identifier.citation | Dufour F, Prieto-Rumeau T. Maximizing the probability of visiting a set infinitely often for a Markov decision process with Borel state and action spaces. Journal of Applied Probability. 2024;61(4):1424-1447. doi:10.1017/jpr.2024.25 | |
dc.identifier.doi | https://doi.org/10.1017/JPR.2024.25 | |
dc.identifier.issn | 0021-9002 | eISSN 1475-6072 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14468/25821 | |
dc.journal.issue | 4 | |
dc.journal.title | Journal of Applied Probability | |
dc.journal.volume | 61 | |
dc.language.iso | en | |
dc.page.final | 1447 | |
dc.page.initial | 1424 | |
dc.publisher | Cambridge University Press | |
dc.relation.center | Facultades y escuelas::Facultad de Ciencias | |
dc.relation.department | Estadística, Investigación Operativa y Cálculo Numérico | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/deed.es | |
dc.subject | 12 Matemáticas::1203 Ciencia de los ordenadores ::1203.17 Informática | |
dc.subject.keywords | Markov decision process | en |
dc.subject.keywords | visiting a set in nitely often | en |
dc.subject.keywords | non-additive optimality criterion | en |
dc.subject.keywords | young measures | en |
dc.subject.keywords | ws1-topology | en |
dc.title | Maximizing the probability of visiting a set infinitely often for a Markov decision process with Borel state and action spaces | en |
dc.type | artículo | es |
dc.type | journal article | en |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 6f28d560-9dfd-4c43-ac89-b1064aedac5c | |
relation.isAuthorOfPublication.latestForDiscovery | 6f28d560-9dfd-4c43-ac89-b1064aedac5c |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Prieto_Dufour_Maximizing_Borel_state_TOMAS PRIETO RUMEAU.pdf
- Tamaño:
- 382.78 KB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 3.62 KB
- Formato:
- Item-specific license agreed to upon submission
- Descripción: