Publicación: Maximizing the probability of visiting a set infinitely often for a Markov decision process with Borel state and action spaces
Fecha
2024
Autores
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Cambridge University Press
Resumen
We consider a Markov control model with Borel state space, metric compact action space, and transitions assumed to have a density function with respect to some probability measure satisfying some continuity conditions. We study the optimization problem of maximizing the probability of visiting some subset of the state space infinitely often, and we show that there exists an optimal stationary Markov policy for this problem. We endow the set of stationary Markov policies and the family of strategic probability measures with adequate topologies (namely, the narrow topology for Young measures and the ws∞ -topology, respectively) to obtain compactness and continuity properties, which allow us to obtain our main results.
Descripción
This is the Accepted Manuscript of an article published by Cambridge University Press in Journal of Applied Probability. 2024, available online: https://doi.org/10.1017/JPR.2024.25
Este es el manuscrito aceptado de un artículo publicado por Cambridge University Press en Journal of Applied Probability. 2024, disponible en línea: https://doi.org/10.1017/JPR.2024.25
Categorías UNESCO
Palabras clave
Markov decision process, visiting a set in nitely often, non-additive optimality criterion, young measures, ws1-topology
Citación
Dufour F, Prieto-Rumeau T. Maximizing the probability of visiting a set infinitely often for a Markov decision process with Borel state and action spaces. Journal of Applied Probability. 2024;61(4):1424-1447. doi:10.1017/jpr.2024.25
Centro
Facultades y escuelas::Facultad de Ciencias
Departamento
Estadística, Investigación Operativa y Cálculo Numérico