Publicación: Solving a fully parabolic chemotaxis system with periodic asymptotic behavior using Generalized Finite Difference Method
dc.contributor.author | Benito Muñoz, Juan J. | |
dc.contributor.author | García, Ángel | |
dc.contributor.author | Gavete, Luis | |
dc.contributor.author | Negreanu, Mihaela | |
dc.contributor.author | Ureña, Francisco | |
dc.contributor.author | Vargas Ureña, Antonio Manuel | |
dc.date.accessioned | 2025-01-10T11:23:35Z | |
dc.date.available | 2025-01-10T11:23:35Z | |
dc.date.issued | 2020-11 | |
dc.description | This is a Submitted Manuscript of an article published by Elsevier in "Applied Numerical Mathematics Volume 157,Pages 356-371", available at: https://doi.org/10.1016/j.apnum.2020.06.011 | |
dc.description | Este es el manuscrito enviado del artículo publicado por Elsevier en "Applied Numerical Mathematics Volume 157, Pages 356-371", disponible en línea: https://doi.org/10.1016/j.apnum.2020.06.011 | |
dc.description.abstract | This work studies a parabolic-parabolic chemotactic PDE's system which describes the evolution of a biological population “U” and a chemical substance “V”, using a Generalized Finite Difference Method, in a two dimensional bounded domain with regular boundary. In a previous paper [12], the authors asserted global classical solvability and periodic asymptotic behavior for the continuous system in 2D. In this continuous work, a rigorous proof of the global classical solvability to the discretization of the model proposed in [12] is presented in two dimensional space. Numerical experiments concerning the convergence in space and in time, and long-time simulations are presented in order to illustrate the accuracy, efficiency and robustness of the developed numerical algorithms. | en |
dc.description.version | versión original | |
dc.identifier.citation | J.J. Benito, A. García, L. Gavete, M. Negreanu, F. Ureña, A.M. Vargas (2020), Solving a fully parabolic chemotaxis system with periodic asymptotic behavior using Generalized Finite Difference Method, Applied Numerical Mathematics Volume 157, Pages 356-371. doi: https://doi.org/10.1016/j.apnum.2020.06.011 | |
dc.identifier.doi | https://doi.org/10.1016/j.apnum.2020.06.011 | |
dc.identifier.issn | 0168-9274 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14468/25181 | |
dc.journal.title | Applied Numerical Mathematics | |
dc.journal.volume | 157 | |
dc.language.iso | en | |
dc.page.final | 371 | |
dc.page.initial | 356 | |
dc.publisher | Elsevier | |
dc.relation.center | Facultades y escuelas::E.T.S. de Ingenieros Industriales | |
dc.relation.department | Matemática Aplicada I | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/deed.es | |
dc.subject | 12 Matemáticas | |
dc.title | Solving a fully parabolic chemotaxis system with periodic asymptotic behavior using Generalized Finite Difference Method | en |
dc.type | artículo | es |
dc.type | journal article | en |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 13299822-df2d-4601-91fe-82bc69ae16c4 | |
relation.isAuthorOfPublication | 6d700201-394b-4442-b0f1-dbe2a6703081 | |
relation.isAuthorOfPublication.latestForDiscovery | 13299822-df2d-4601-91fe-82bc69ae16c4 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- SolvingParabolicGFD_ANTONIO MANUEL VARGAS.pdf
- Tamaño:
- 19.9 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 3.62 KB
- Formato:
- Item-specific license agreed to upon submission
- Descripción: