Publicación: MIMO-Based Indoor Localisation With Hybrid Neural Networks: Leveraging Synthetic Images From Tidy Data for Enhanced Deep Learning
| dc.contributor.author | Castillo-Cara, Manuel | |
| dc.contributor.author | Martínez-Gómez, Jesús | |
| dc.contributor.author | Ballesteros-Jerez, Javier | |
| dc.contributor.author | García-Varea, Ismael | |
| dc.contributor.author | García-Castro, Raúl | |
| dc.contributor.author | Orozco-Barbosa, Luis | |
| dc.date.accessioned | 2025-10-14T14:48:53Z | |
| dc.date.available | 2025-10-14T14:48:53Z | |
| dc.date.issued | 2025-03-31 | |
| dc.description | The registered version of this article, first published in IEEE Journal of Selected Topics in Signal Processing, is available online at the publisher's website: Institute of Electrical and Electronics Engineers (IEEE), https://doi.org/10.1109/JSTSP.2025.3555067 | |
| dc.description | La versión registrada de este artículo, publicado por primera vez en IEEE Journal of Selected Topics in Signal Processing, está disponible en línea en el sitio web del editor: Institute of Electrical and Electronics Engineers (IEEE), https://doi.org/10.1109/JSTSP.2025.3555067 | |
| dc.description | This work was supported in part by the Government of Castilla-La Mancha and “ERDF A way of making Europe” under Project SBPLY/21/180225/000062, in part by CYTED under Grant 520rt0011, in part by the Spanish Government (AEI) under Projects PID2022-137344OB-C33 /AEI/10.13039/501100011033, Project PID2021-123627OB-C52, and Project PID2019–106758GB–C33, in part by Madrid Government (Comunidad de Madrid-Spain) through the Multiannual Agreement with the Universidad Politécnica de Madrid in the Excellence Programme for University Teaching Staff, in the context of the V PRICIT (Regional Programme of Research and TechnologicalInnovation),andinpartbytheUniversidaddeCastilla-LaMancha and “ERDF A way of making Europe” under Project 2022-GRIN-34437. | |
| dc.description.abstract | Indoor localization determines an object’s position within enclosed spaces, with applications in navigation, asset tracking, robotics, and context-aware computing. Technologies range from WiFi and Bluetooth to advanced systems like Massive Multiple Input-Multiple Output (MIMO). MIMO, initially designed to enhance wireless communication, is now key in indoor positioning due to its spatial diversity and multipath propagation. This study integrates MIMO-based indoor localization with Hybrid Neural Networks (HyNN), converting structured datasets into synthetic images using TINTO. This research marks the first application of HyNNs using synthetic images for MIMO-based indoor localization. Our key contributions include: (i) adapting TINTO for regression problems; (ii) using synthetic images as input data for our model; (iii) designing a novel HyNN with a Convolutional Neural Network branch for synthetic images and an MultiLayer Percetron branch for tidy data; and (iv) demonstrating improved results and metrics compared to prior literature. These advancements highlight the potential of HyNNs in enhancing the accuracy and efficiency of indoor localization systems. | en |
| dc.description.version | versión publicada | |
| dc.identifier.citation | M. Castillo-Cara, J. Martínez-Gómez, J. Ballesteros-Jerez, I. García-Varea, R. García-Castro and L. Orozco-Barbosa, "MIMO-Based Indoor Localisation With Hybrid Neural Networks: Leveraging Synthetic Images From Tidy Data for Enhanced Deep Learning," in IEEE Journal of Selected Topics in Signal Processing, vol. 19, no. 3, pp. 559-571, April 2025 | |
| dc.identifier.doi | https://doi.org/10.1109/JSTSP.2025.3555067 | |
| dc.identifier.issn | 1941-0484 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14468/30409 | |
| dc.journal.issue | 3 | |
| dc.journal.title | IEEE Journal of Selected Topics in Signal Processing | |
| dc.journal.volume | 19 | |
| dc.language.iso | en | |
| dc.page.final | 571 | |
| dc.page.initial | 559 | |
| dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | |
| dc.relation.center | E.T.S. de Ingeniería Informática | |
| dc.relation.department | Inteligencia Artificial | |
| dc.rights | info:eu-repo/semantics/openAccess | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/deed.es | |
| dc.subject | 1203.04 Inteligencia artificial | |
| dc.subject.keywords | massive MIMO | en |
| dc.subject.keywords | deep learning | en |
| dc.subject.keywords | hybrid neural network | en |
| dc.subject.keywords | synthetic images | en |
| dc.subject.keywords | positioning | en |
| dc.subject.keywords | indoor localisation | es |
| dc.title | MIMO-Based Indoor Localisation With Hybrid Neural Networks: Leveraging Synthetic Images From Tidy Data for Enhanced Deep Learning | en |
| dc.type | artículo | es |
| dc.type | journal article | en |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | c0e39bd2-c0d8-4743-953d-488baf6b977e | |
| relation.isAuthorOfPublication.latestForDiscovery | c0e39bd2-c0d8-4743-953d-488baf6b977e |