Fecha
2025-03-31
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editorial
Institute of Electrical and Electronics Engineers (IEEE)
Resumen
Indoor localization determines an object’s position within enclosed spaces, with applications in navigation, asset tracking, robotics, and context-aware computing. Technologies range from WiFi and Bluetooth to advanced systems like Massive Multiple Input-Multiple Output (MIMO). MIMO, initially designed to enhance wireless communication, is now key in indoor positioning due to its spatial diversity and multipath propagation. This study integrates MIMO-based indoor localization with Hybrid Neural Networks (HyNN), converting structured datasets into synthetic images using TINTO. This research marks the first application of HyNNs using synthetic images for MIMO-based indoor localization. Our key contributions include: (i) adapting TINTO for regression problems; (ii) using synthetic images as input data for our model; (iii) designing a novel HyNN with a Convolutional Neural Network branch for synthetic images and an MultiLayer Percetron branch for tidy data; and (iv) demonstrating improved results and metrics compared to prior literature. These advancements highlight the potential of HyNNs in enhancing the accuracy and efficiency of indoor localization systems.
Descripción
The registered version of this article, first published in IEEE Journal of Selected Topics in Signal Processing, is available online at the publisher's website: Institute of Electrical and Electronics Engineers (IEEE), https://doi.org/10.1109/JSTSP.2025.3555067
La versión registrada de este artículo, publicado por primera vez en IEEE Journal of Selected Topics in Signal Processing, está disponible en línea en el sitio web del editor: Institute of Electrical and Electronics Engineers (IEEE), https://doi.org/10.1109/JSTSP.2025.3555067
This work was supported in part by the Government of Castilla-La Mancha and “ERDF A way of making Europe” under Project SBPLY/21/180225/000062, in part by CYTED under Grant 520rt0011, in part by the Spanish Government (AEI) under Projects PID2022-137344OB-C33 /AEI/10.13039/501100011033, Project PID2021-123627OB-C52, and Project PID2019–106758GB–C33, in part by Madrid Government (Comunidad de Madrid-Spain) through the Multiannual Agreement with the Universidad Politécnica de Madrid in the Excellence Programme for University Teaching Staff, in the context of the V PRICIT (Regional Programme of Research and TechnologicalInnovation),andinpartbytheUniversidaddeCastilla-LaMancha and “ERDF A way of making Europe” under Project 2022-GRIN-34437.
La versión registrada de este artículo, publicado por primera vez en IEEE Journal of Selected Topics in Signal Processing, está disponible en línea en el sitio web del editor: Institute of Electrical and Electronics Engineers (IEEE), https://doi.org/10.1109/JSTSP.2025.3555067
This work was supported in part by the Government of Castilla-La Mancha and “ERDF A way of making Europe” under Project SBPLY/21/180225/000062, in part by CYTED under Grant 520rt0011, in part by the Spanish Government (AEI) under Projects PID2022-137344OB-C33 /AEI/10.13039/501100011033, Project PID2021-123627OB-C52, and Project PID2019–106758GB–C33, in part by Madrid Government (Comunidad de Madrid-Spain) through the Multiannual Agreement with the Universidad Politécnica de Madrid in the Excellence Programme for University Teaching Staff, in the context of the V PRICIT (Regional Programme of Research and TechnologicalInnovation),andinpartbytheUniversidaddeCastilla-LaMancha and “ERDF A way of making Europe” under Project 2022-GRIN-34437.
Categorías UNESCO
Palabras clave
massive MIMO, deep learning, hybrid neural network, synthetic images, positioning, indoor localisation
Citación
M. Castillo-Cara, J. Martínez-Gómez, J. Ballesteros-Jerez, I. García-Varea, R. García-Castro and L. Orozco-Barbosa, "MIMO-Based Indoor Localisation With Hybrid Neural Networks: Leveraging Synthetic Images From Tidy Data for Enhanced Deep Learning," in IEEE Journal of Selected Topics in Signal Processing, vol. 19, no. 3, pp. 559-571, April 2025
Centro
E.T.S. de Ingeniería Informática
Departamento
Inteligencia Artificial



