Publicación:
Occurrence of erythromycin residues in sheep milk. Validation of an analytical method

Cargando...
Miniatura
Fecha
2015-04
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
Atribución-NoComercial-SinDerivadas 4.0 Internacional
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Elsevier
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
The paper describes a new and selective analytical sample treatment for quantitative extraction and preconcentration of erythromycin in presence of other macrolide antibiotics in sheep milk samples. The methodology is based on the use of a molecular imprinted polymer (MIP) employed as solid phase extraction sorbent (MISPE). The synthesized material by bulk polymerization using erythromycin (ERY) as template was evaluated as solid phase extraction sorbent, in a novel sample treatment technique that can be coupled to high-performance liquid chromatography with diode-array detector (HPLC-DAD). MIP selectivity was studied for other macrolide antibiotics with similar structures, such as tylosin (TYL), spiramycin (SPI), josamycin (JOS), roxithromycin (ROX) and ivermectin (IVER) getting recoveries for these interferents lower than 35%, for all cases except for ROX, which recoveries were around 85%. The variables affecting the molecularly imprinted solid-phase extraction (MISPE) procedure were optimized to select the best conditions of selectivity and sensitivity to determine ERY at concentration levels established by EU legislation in sheep milk. Under the selected experimental conditions, quantification limit was 24.1 µg kg−1. Recoveries were higher than 98%, with RSDs between 0.7% and 2%. The proposed MISPE-HPLC method was validated and successfully applied to ERY analysis in sheep milk samples.
Descripción
Categorías UNESCO
Palabras clave
Erythromycin, Molecularly imprinted solid-phase extraction, Sheep milk, HPLC-DAD
Citación
Centro
Facultad de Ciencias
Departamento
Ciencias Analíticas
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra