Publicación: Workforce Distribution in Dynamic Multi-Agent Systems
dc.contributor.author | Millán Ruiz, David | |
dc.contributor.director | Fernández Galán, Severino | |
dc.date.accessioned | 2024-05-20T12:23:42Z | |
dc.date.available | 2024-05-20T12:23:42Z | |
dc.date.issued | 2010-07 | |
dc.description.abstract | This work describes a novel approach to workforce distribution in dynamic multi-agent systems based on backboard architectures. These environments entail quick adaptations to a changing environment that only fast greedy heuristics can handle. These greedy heuristics consist of a continuous re-planning, considering the current state of the system. As these decisions are greedily taken, the workforce distribution may be poor for middle and/or long term planning due to incessant wrong movements. The use of parallel memetic algorithms, which are more complex than classical, ad-hoc heuristics, can guide us towards more accurate solutions. In order to apply parallel memetic algorithms to such a dynamic environment, we propose a reformulation of the traditional problem, which combines predictions of future situations with a precise search mechanism, by enlarging or diminishing the timeframe considered. The size of the time-frame depends upon the dynamism of the system (smaller when there is high dynamism and larger when there is low dynamism). This work demonstrates how nearly optimal solutions each v seconds (size of the time-frame) outperforms continuous bad distributions when the right size of the time-frame is determined, and predictions and optimisations are properly carried out. Specifically, we propose a neural network for predicting future system variables and a parallel memetic algorithm to perform the assignment of incoming tasks to the right agents, which outperforms other conventional approaches. Additionally, we propose a modification of the resilient back-propagation algorithm and evolutionary operators based on meta-heuristics. To conclude, we test out our method on a real-world production environment from Telefónica which is a large multinational telephone operator. | en |
dc.description.version | versión final | |
dc.identifier.uri | https://hdl.handle.net/20.500.14468/14127 | |
dc.language.iso | en | |
dc.publisher | Universidad Nacional de Educación a Distancia (España). Escuela Técnica Superior de Ingeniería Informática. Departamento de Inteligencia Artificial. | |
dc.relation.center | E.T.S. de Ingeniería Informática | |
dc.relation.degree | Máster Universitario en I.A. Avanzada: Fundamentos, Métodos y Aplicaciones | |
dc.relation.department | Inteligencia Artificial | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es | |
dc.title | Workforce Distribution in Dynamic Multi-Agent Systems | es |
dc.type | tesis de maestría | es |
dc.type | master thesis | en |
dspace.entity.type | Publication |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Millan_Ruiz_David_TFM.pdf
- Tamaño:
- 1.57 MB
- Formato:
- Adobe Portable Document Format