Publicación:
Workforce Distribution in Dynamic Multi-Agent Systems

Cargando...
Miniatura
Fecha
2010-07
Editor/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Universidad Nacional de Educación a Distancia (España). Escuela Técnica Superior de Ingeniería Informática. Departamento de Inteligencia Artificial.
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
This work describes a novel approach to workforce distribution in dynamic multi-agent systems based on backboard architectures. These environments entail quick adaptations to a changing environment that only fast greedy heuristics can handle. These greedy heuristics consist of a continuous re-planning, considering the current state of the system. As these decisions are greedily taken, the workforce distribution may be poor for middle and/or long term planning due to incessant wrong movements. The use of parallel memetic algorithms, which are more complex than classical, ad-hoc heuristics, can guide us towards more accurate solutions. In order to apply parallel memetic algorithms to such a dynamic environment, we propose a reformulation of the traditional problem, which combines predictions of future situations with a precise search mechanism, by enlarging or diminishing the timeframe considered. The size of the time-frame depends upon the dynamism of the system (smaller when there is high dynamism and larger when there is low dynamism). This work demonstrates how nearly optimal solutions each v seconds (size of the time-frame) outperforms continuous bad distributions when the right size of the time-frame is determined, and predictions and optimisations are properly carried out. Specifically, we propose a neural network for predicting future system variables and a parallel memetic algorithm to perform the assignment of incoming tasks to the right agents, which outperforms other conventional approaches. Additionally, we propose a modification of the resilient back-propagation algorithm and evolutionary operators based on meta-heuristics. To conclude, we test out our method on a real-world production environment from Telefónica which is a large multinational telephone operator.
Descripción
Categorías UNESCO
Palabras clave
Citación
Centro
Facultades y escuelas::E.T.S. de Ingeniería Informática
Departamento
Inteligencia Artificial
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra
DOI