Publicación: Leveraging Unsupervised Task Adaptation and Semi-Supervised Learning With Semantic-Enriched Representations for Online Sexism Detection
dc.contributor.author | Rodríguez-Sánchez, Francisco | |
dc.contributor.author | Carrillo de Albornoz Cuadrado, Jorge Amando | |
dc.contributor.author | Plaza Morales, Laura | |
dc.contributor.orcid | https://orcid.org/0000-0002-4669-5261 | |
dc.date.accessioned | 2025-02-20T18:24:01Z | |
dc.date.available | 2025-02-20T18:24:01Z | |
dc.date.issued | 2024-10-25 | |
dc.description | This is an Accepted Manuscript of an article published by Wiley in "Expert Systems, 2025; 42:e13763", available at: https://doi.org/10.1111/exsy.13763 Este es el manuscrito aceptado del artículo publicado por Wiley en "Expert Systems, 2025; 42:e13763", disponible en línea: https://doi.org/10.1111/exsy.13763 | |
dc.description.abstract | Over the past decade, the proliferation of hateful and sexist content targeting women on social media has become a concerning issue, adversely affecting women's lives and freedom of expression. Previous efforts to detect online sexism have utilized monolingual ensemble transformers combined with data augmentation techniques that incorporate related-domain data, such as hate speech. However, these approaches often struggle to capture the full diversity and complexity of sexism due to limitations in the size and quality of training data. In this study, we introduce a novel sexism detection system that employs in-domain unlabeled data through unsupervised task-adaptation techniques and semi-supervised learning, using an efficient single multilingual transformer model. Additionally, we incorporate a Sentence-BERT layer to enhance our system with semantically meaningful sentence embeddings. Our proposed system outperforms existing state-of-the-art methods across all tasks and datasets, demonstrating its effectiveness in detecting and addressing sexism in social media text. These results underscore the potential of our approach, providing a foundation for further research and practical applications. | en |
dc.description.version | versión final | |
dc.identifier.citation | Rodríguez-Sánchez, Francisco Carrillo de Albornoz Cuadrado, Jorge Amando Plaza Morales, Laura. Leveraging Unsupervised Task Adaptation and Semi-Supervised Learning With Semantic-Enriched Representations for Online Sexism Detection, Expert Systems, 2025; 42:e13763 https://doi.org/10.1111/exsy.13763 | |
dc.identifier.doi | https://doi.org/10.1111/exsy.13763 | |
dc.identifier.issn | ISSN 0266-4720 eISSN 1468-0394 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14468/25947 | |
dc.journal.title | Expert Systems | |
dc.journal.volume | 42 | |
dc.language.iso | en | |
dc.publisher | Wiley | |
dc.relation.center | Facultades y escuelas::E.T.S. de Ingeniería Informática | |
dc.relation.department | Lenguajes y Sistemas Informáticos | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/deed.es | |
dc.subject | 61 Psicología::6114 Psicología social | |
dc.subject | 33 Ciencias Tecnológicas::3304 Tecnología de los ordenadores | |
dc.subject.keywords | online sexism | en |
dc.subject.keywords | sexism detection | en |
dc.subject.keywords | sexism categorization | en |
dc.subject.keywords | social media | en |
dc.subject.keywords | sexism dataset | en |
dc.title | Leveraging Unsupervised Task Adaptation and Semi-Supervised Learning With Semantic-Enriched Representations for Online Sexism Detection | en |
dc.type | artículo | es |
dc.type | journal article | en |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 53880f08-9d78-461b-9d10-89624a089b47 | |
relation.isAuthorOfPublication | 29746aa9-9544-4364-8665-8b92a433fbfe | |
relation.isAuthorOfPublication.latestForDiscovery | 53880f08-9d78-461b-9d10-89624a089b47 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- RodriguezSanchez_FranciscoMiguel_Leveraging Unsupervised Task Adaptation and Semi-Supervised_FRANCISCO MIGUEL ROD.pdf
- Tamaño:
- 1.14 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 3.62 KB
- Formato:
- Item-specific license agreed to upon submission
- Descripción: