Publicación:
Leveraging Unsupervised Task Adaptation and Semi-Supervised Learning With Semantic-Enriched Representations for Online Sexism Detection

Cargando...
Miniatura
Fecha
2024-10-25
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Wiley
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
Over the past decade, the proliferation of hateful and sexist content targeting women on social media has become a concerning issue, adversely affecting women's lives and freedom of expression. Previous efforts to detect online sexism have utilized monolingual ensemble transformers combined with data augmentation techniques that incorporate related-domain data, such as hate speech. However, these approaches often struggle to capture the full diversity and complexity of sexism due to limitations in the size and quality of training data. In this study, we introduce a novel sexism detection system that employs in-domain unlabeled data through unsupervised task-adaptation techniques and semi-supervised learning, using an efficient single multilingual transformer model. Additionally, we incorporate a Sentence-BERT layer to enhance our system with semantically meaningful sentence embeddings. Our proposed system outperforms existing state-of-the-art methods across all tasks and datasets, demonstrating its effectiveness in detecting and addressing sexism in social media text. These results underscore the potential of our approach, providing a foundation for further research and practical applications.
Descripción
This is an Accepted Manuscript of an article published by Wiley in "Expert Systems, 2025; 42:e13763", available at: https://doi.org/10.1111/exsy.13763 Este es el manuscrito aceptado del artículo publicado por Wiley en "Expert Systems, 2025; 42:e13763", disponible en línea: https://doi.org/10.1111/exsy.13763
Categorías UNESCO
Palabras clave
online sexism, sexism detection, sexism categorization, social media, sexism dataset
Citación
Rodríguez-Sánchez, Francisco Carrillo de Albornoz Cuadrado, Jorge Amando Plaza Morales, Laura. Leveraging Unsupervised Task Adaptation and Semi-Supervised Learning With Semantic-Enriched Representations for Online Sexism Detection, Expert Systems, 2025; 42:e13763 https://doi.org/10.1111/exsy.13763
Centro
Facultades y escuelas::E.T.S. de Ingeniería Informática
Departamento
Lenguajes y Sistemas Informáticos
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra