Publicación: Periodic projections of alternating knots
dc.contributor.author | Costa González, Antonio Félix | |
dc.contributor.author | Quach Honglerb, Cam Van | |
dc.date.accessioned | 2024-06-14T07:18:43Z | |
dc.date.available | 2024-06-14T07:18:43Z | |
dc.date.issued | 2021-08-15 | |
dc.description | The registered version of this article, first published in “Topology and its Applications, Volume 300, 2021, 107753", is available online at the publisher's website: Elsevier, https://doi.org/10.1016/j.topol.2021.107753 La versión registrada de este artículo, publicado por primera vez en “Topology and its Applications, Volume 300, 2021, 107753", está disponible en línea en el sitio web del editor: Elsevier, https://doi.org/10.1016/j.topol.2021.107753 | |
dc.description.abstract | This paper is devoted to the proof of existence of q-periodic alternating projections of prime alternating q-periodic knots. The main tool is the Menasco-Thistlethwaite’s Flyping Theorem. Let Kbe an oriented prime alternating knot that is q-periodic with q≥3, i.e. that admits a rotation of order qas a symmetry. Then Khas an alternating projection Π(K)such that the rotational symmetry of Kis visualized as a rotation of the projection sphere leaving Π(K)invariant. As an application, we obtain that the crossing number of a q-periodic alternating knot with q≥3is a multiple of q. Furthermore we give an elementary proof that the knot 12a634is not 3-periodic; our proof does not depend on computer calculations as in [11]. | en |
dc.description.version | versión publicada | |
dc.identifier.citation | Antonio F. Costa, Cam Van Quach-Hongler, Periodic projections of alternating knots, Topology and its Applications, Volume 300, 2021, 107753, ISSN 0166-8641, https://doi.org/10.1016/j.topol.2021.107753. | |
dc.identifier.doi | https://doi.org/10.1016/j.topol.2021.107753 | |
dc.identifier.issn | 0166-8641 Online ISSN: 1879-3207 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14468/22643 | |
dc.journal.title | Topology and its Applications | |
dc.journal.volume | 300 | |
dc.language.iso | en | |
dc.page.initial | 107753 | |
dc.relation.center | Facultad de Ciencias | |
dc.relation.department | Matemáticas Fundamentales | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es | |
dc.subject | 12 Matemáticas | |
dc.subject.keywords | knot | en |
dc.subject.keywords | alternating knot | en |
dc.subject.keywords | projection | en |
dc.subject.keywords | periodic knot | en |
dc.subject.keywords | flype | en |
dc.title | Periodic projections of alternating knots | en |
dc.type | journal article | en |
dc.type | artículo | es |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 8dbf4941-94eb-4e49-a01e-8b9c32463231 | |
relation.isAuthorOfPublication.latestForDiscovery | 8dbf4941-94eb-4e49-a01e-8b9c32463231 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Costa_Gonzalez_Antonio_PeriodicProjections.pdf
- Tamaño:
- 745.88 KB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 3.62 KB
- Formato:
- Item-specific license agreed to upon submission
- Descripción: