Publicación: Periodic projections of alternating knots
No hay miniatura disponible
Fecha
2021-08-15
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Resumen
This paper is devoted to the proof of existence of q-periodic alternating projections of prime alternating q-periodic knots. The main tool is the Menasco-Thistlethwaite’s Flyping Theorem.
Let Kbe an oriented prime alternating knot that is q-periodic with q≥3, i.e. that admits a rotation of order qas a symmetry. Then Khas an alternating projection Π(K)such that the rotational symmetry of Kis visualized as a rotation of the projection sphere leaving Π(K)invariant.
As an application, we obtain that the crossing number of a q-periodic alternating knot with q≥3is a multiple of q. Furthermore we give an elementary proof that the knot 12a634is not 3-periodic; our proof does not depend on computer calculations as in [11].
Descripción
The registered version of this article, first published in “Topology and its Applications, Volume 300, 2021, 107753", is available online at the publisher's website: Elsevier, https://doi.org/10.1016/j.topol.2021.107753
La versión registrada de este artículo, publicado por primera vez en “Topology and its Applications, Volume 300, 2021, 107753", está disponible en línea en el sitio web del editor: Elsevier, https://doi.org/10.1016/j.topol.2021.107753
Categorías UNESCO
Palabras clave
knot, alternating knot, projection, periodic knot, flype
Citación
Antonio F. Costa, Cam Van Quach-Hongler, Periodic projections of alternating knots, Topology and its Applications, Volume 300, 2021, 107753, ISSN 0166-8641, https://doi.org/10.1016/j.topol.2021.107753.
Centro
Facultad de Ciencias
Departamento
Matemáticas Fundamentales