Publicación:
Periodic projections of alternating knots

No hay miniatura disponible
Fecha
2021-08-15
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
This paper is devoted to the proof of existence of q-periodic alternating projections of prime alternating q-periodic knots. The main tool is the Menasco-Thistlethwaite’s Flyping Theorem. Let Kbe an oriented prime alternating knot that is q-periodic with q≥3, i.e. that admits a rotation of order qas a symmetry. Then Khas an alternating projection Π(K)such that the rotational symmetry of Kis visualized as a rotation of the projection sphere leaving Π(K)invariant. As an application, we obtain that the crossing number of a q-periodic alternating knot with q≥3is a multiple of q. Furthermore we give an elementary proof that the knot 12a634is not 3-periodic; our proof does not depend on computer calculations as in [11].
Descripción
The registered version of this article, first published in “Topology and its Applications, Volume 300, 2021, 107753", is available online at the publisher's website: Elsevier, https://doi.org/10.1016/j.topol.2021.107753 La versión registrada de este artículo, publicado por primera vez en “Topology and its Applications, Volume 300, 2021, 107753", está disponible en línea en el sitio web del editor: Elsevier, https://doi.org/10.1016/j.topol.2021.107753
Categorías UNESCO
Palabras clave
knot, alternating knot, projection, periodic knot, flype
Citación
Antonio F. Costa, Cam Van Quach-Hongler, Periodic projections of alternating knots, Topology and its Applications, Volume 300, 2021, 107753, ISSN 0166-8641, https://doi.org/10.1016/j.topol.2021.107753.
Centro
Facultad de Ciencias
Departamento
Matemáticas Fundamentales
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra