Publicación: Robust Estimation of Population-Level Effects in Repeated-Measures NLP Experimental Designs
| dc.contributor.author | Benito Santos, Alejandro | |
| dc.contributor.author | Ghajari Espinosa, Adrián | |
| dc.contributor.author | Fresno Fernández, Víctor Diego | |
| dc.coverage.spatial | Viena | |
| dc.coverage.temporal | 2025-07-27 | |
| dc.date.accessioned | 2025-12-03T14:35:50Z | |
| dc.date.available | 2025-12-03T14:35:50Z | |
| dc.date.issued | 2025-01-01 | |
| dc.description | The registered version of this conference paper, first published in " In Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 33076–33089, Vienna, Austria", is available online at the publisher's website: Association for Computational Linguistics, https//doi: 10.18653/v1/2025.acl-long.1586 | |
| dc.description | La versión registrada de esta comunicación, publicada por primera vez en"In Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 33076–33089, Vienna, Austria", está disponible en línea en el sitio web del editor: Association for Computational Linguistics, https//doi: 10.18653/v1/2025.acl-long.1586 | |
| dc.description.abstract | NLP research frequently grapples with multiple sources of variability—spanning runs, datasets, annotators, and more—yet conventional analysis methods often neglect these hierarchical structures, threatening the reproducibility of findings. To address this gap, we contribute a case study illustrating how linear mixed-effects models (LMMs) can rigorously capture systematic language-dependent differences (i.e., population-level effects) in a population of monolingual and multilingual language models. In the context of a bilingual hate speech detection task, we demonstrate that LMMs can uncover significant population-level effects—even under low-resource (small-N) experimental designs—while mitigating confounds and random noise. By setting out a transparent blueprint for repeated-measures experimentation, we encourage the NLP community to embrace variability as a feature, rather than a nuisance, in order to advance more robust, reproducible, and ultimately trustworthy results. | en |
| dc.description.version | versión publicada | |
| dc.identifier.citation | Alejandro Benito-Santos, Adrian Ghajari, and Víctor Fresno. 2025. Robust Estimation of Population-Level Effects in Repeated-Measures NLP Experimental Designs. In Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 33076–33089, Vienna, Austria. Association for Computational Linguistics. | |
| dc.identifier.doi | https://doi.org/10.18653/v1/2025.acl-long.1586 | |
| dc.identifier.issn | 0736-587X | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14468/30995 | |
| dc.language.iso | en | |
| dc.publisher | Association for Computational Linguistics | |
| dc.relation.center | E.T.S. de Ingeniería Informática | |
| dc.relation.congress | Annual Meeting of the Association for Computational Linguistics | |
| dc.relation.department | Lenguajes y Sistemas Informáticos | |
| dc.rights | info:eu-repo/semantics/openAccess | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/deed.es | |
| dc.subject | 1203.23 Lenguajes de programación | |
| dc.subject | 1203.07 Modelos causales | |
| dc.title | Robust Estimation of Population-Level Effects in Repeated-Measures NLP Experimental Designs | en |
| dc.type | actas de congreso | es |
| dc.type | conference proceedings | en |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | c2a07fe0-c0d7-4a21-bdb8-e7d547e5b78b | |
| relation.isAuthorOfPublication | db5da577-2d78-45c3-9733-47368503a59c | |
| relation.isAuthorOfPublication | 80cd3492-0ff8-4c8e-a904-2858623c7fc1 | |
| relation.isAuthorOfPublication.latestForDiscovery | c2a07fe0-c0d7-4a21-bdb8-e7d547e5b78b |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- (Benito-Santos et , 2025) 2025.acl-long.1586_VICTOR DIEGO FRESNO.pdf
- Tamaño:
- 724.53 KB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 3.62 KB
- Formato:
- Item-specific license agreed to upon submission
- Descripción: