No hay miniatura disponible
Fecha
2025-01-01
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editorial
Association for Computational Linguistics
Resumen
NLP research frequently grapples with multiple sources of variability—spanning runs, datasets, annotators, and more—yet conventional analysis methods often neglect these hierarchical structures, threatening the reproducibility of findings. To address this gap, we contribute a case study illustrating how linear mixed-effects models (LMMs) can rigorously capture systematic language-dependent differences (i.e., population-level effects) in a population of monolingual and multilingual language models. In the context of a bilingual hate speech detection task, we demonstrate that LMMs can uncover significant population-level effects—even under low-resource (small-N) experimental designs—while mitigating confounds and random noise. By setting out a transparent blueprint for repeated-measures experimentation, we encourage the NLP community to embrace variability as a feature, rather than a nuisance, in order to advance more robust, reproducible, and ultimately trustworthy results.
Descripción
The registered version of this conference paper, first published in " In Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 33076–33089, Vienna, Austria", is available online at the publisher's website: Association for Computational Linguistics, https//doi: 10.18653/v1/2025.acl-long.1586
La versión registrada de esta comunicación, publicada por primera vez en"In Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 33076–33089, Vienna, Austria", está disponible en línea en el sitio web del editor: Association for Computational Linguistics, https//doi: 10.18653/v1/2025.acl-long.1586
La versión registrada de esta comunicación, publicada por primera vez en"In Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 33076–33089, Vienna, Austria", está disponible en línea en el sitio web del editor: Association for Computational Linguistics, https//doi: 10.18653/v1/2025.acl-long.1586
Categorías UNESCO
Palabras clave
Citación
Alejandro Benito-Santos, Adrian Ghajari, and Víctor Fresno. 2025. Robust Estimation of Population-Level Effects in Repeated-Measures NLP Experimental Designs. In Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 33076–33089, Vienna, Austria. Association for Computational Linguistics.
Centro
E.T.S. de Ingeniería Informática
Departamento
Lenguajes y Sistemas Informáticos



