Publicación: A Rule-Learning Approach for Detecting Faults in Highly Configurable Software Systems from Uniform Random Samples
dc.contributor.author | Heradio Gil, Rubén | |
dc.contributor.author | Fernández Amoros, David José | |
dc.contributor.author | Ruiz Parrado, Victoria | |
dc.contributor.author | Cobo, Manuel J. | |
dc.contributor.orcid | https://orcid.org/0000-0003-2993-7705 | |
dc.contributor.orcid | http://orcid.org/ 0000-0001-6575-803X | |
dc.coverage.spatial | Hawaii, USA | |
dc.coverage.temporal | 2022 | |
dc.date.accessioned | 2024-10-11T11:25:56Z | |
dc.date.available | 2024-10-11T11:25:56Z | |
dc.date.issued | 2022 | |
dc.description.abstract | Software systems tend to become more and more configurable to satisfy the demands of their increasingly varied customers. Exhaustively testing the correctness of highly configurable software is infeasible in most cases because the space of possible configurations is typically colossal. This paper proposes addressing this challenge by (i) working with a representative sample of the configurations, i.e., a ``uniform'' random sample, and (ii) processing the results of testing the sample with a rule induction system that extracts the faults that cause the tests to fail. The paper (i) gives a concrete implementation of the approach, (ii) compares the performance of the rule learning algorithms AQ, CN2, LEM2, PART, and RIPPER, and (iii) provides empirical evidence supporting our procedure | en |
dc.description.version | versión final | |
dc.identifier.citation | Ruben Heradio, David Fernandez-Amoros, Victoria Ruiz-Parrado, Manuel J. Cobo. A Rule-Learning Approach for Detecting Faults in Highly Configurable Software Systems from Uniform Random Samples. Hawaii International Conference on System Sciences 2022 DOI: 0.24251/HICSS.2022.263 | |
dc.identifier.doi | https://doi.org/10.24251/HICSS.2022.263 | |
dc.identifier.isbn | 9780998133157 | |
dc.identifier.issn | 1530-1605 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14468/24024 | |
dc.language.iso | en | |
dc.relation.center | Facultades y escuelas | |
dc.relation.congress | Proceedings of the Annual Hawaii International Conference on System Sciences | |
dc.relation.department | Ingeniería de Software y Sistemas Informáticos | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/deed.es | |
dc.subject | 33 Ciencias Tecnológicas::3304 Tecnología de los ordenadores | |
dc.title | A Rule-Learning Approach for Detecting Faults in Highly Configurable Software Systems from Uniform Random Samples | en |
dc.type | actas de congreso | es |
dc.type | conference proceedings | en |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 38af03ae-439e-45a8-8383-80340d20f7cb | |
relation.isAuthorOfPublication | 60bb7374-7021-4fda-b2cb-ef7f923c64f4 | |
relation.isAuthorOfPublication.latestForDiscovery | 38af03ae-439e-45a8-8383-80340d20f7cb |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Heradio_Ruben_A Rule Learning Approach for De_RUBEN HERADIO GIL.pdf
- Tamaño:
- 755.81 KB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 3.62 KB
- Formato:
- Item-specific license agreed to upon submission
- Descripción: