Publicación:
A Rule-Learning Approach for Detecting Faults in Highly Configurable Software Systems from Uniform Random Samples

Cargando...
Miniatura
Fecha
2022
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
Software systems tend to become more and more configurable to satisfy the demands of their increasingly varied customers. Exhaustively testing the correctness of highly configurable software is infeasible in most cases because the space of possible configurations is typically colossal. This paper proposes addressing this challenge by (i) working with a representative sample of the configurations, i.e., a ``uniform'' random sample, and (ii) processing the results of testing the sample with a rule induction system that extracts the faults that cause the tests to fail. The paper (i) gives a concrete implementation of the approach, (ii) compares the performance of the rule learning algorithms AQ, CN2, LEM2, PART, and RIPPER, and (iii) provides empirical evidence supporting our procedure
Descripción
Categorías UNESCO
Palabras clave
Citación
Ruben Heradio, David Fernandez-Amoros, Victoria Ruiz-Parrado, Manuel J. Cobo. A Rule-Learning Approach for Detecting Faults in Highly Configurable Software Systems from Uniform Random Samples. Hawaii International Conference on System Sciences 2022 DOI: 0.24251/HICSS.2022.263
Centro
Facultades y escuelas
Departamento
Ingeniería de Software y Sistemas Informáticos
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra