Publicación: Enhanced preprocessing and adaptive weighted loss function for improved for white matter hyperintensity segmentation with convolutional neural networks.
dc.contributor.author | Duque Asens, Pablo | |
dc.contributor.director | Rincón Zamorano, Mariano | |
dc.contributor.director | Cuadra Troncoso, José Manuel | |
dc.date.accessioned | 2024-05-20T12:33:55Z | |
dc.date.available | 2024-05-20T12:33:55Z | |
dc.date.issued | 2020-10-06 | |
dc.description.abstract | There is a great interest in automating White Matter Hyperintensities (WMH) segmentation due to their importance in the medical eld as well as the great amount of inter- and intra-observer variability that appears when it is manually segmented in magnetic resonance imaging. In this work we present a multistep tailored preprocessing consisting mainly of brain extraction, intensity contrast enhancement, subject based slice cropping and intensity standardization. The segmentation task is then performed by a fully convolutional neural network with attention gates which employs a customized loss function based on the dice similarity coecient and the F1 score. Experimental results on the white matter hyperintensities segmentation challenge [Kuijf et al., 2019] show that our proposed preprocessing improves segmentation, that attention gated U-Net further improves segmentation tasks compared to the original U-Net and our proposed loss function has the potential to improve lesion-wise F1 on DSC based segmentations. | en |
dc.description.version | versión final | |
dc.identifier.uri | https://hdl.handle.net/20.500.14468/14523 | |
dc.language.iso | en | |
dc.publisher | Universidad Nacional de Educación a Distancia (España). Escuela Técnica Superior de Ingeniería Informática. Departamento de Inteligencia Artificial. | |
dc.relation.center | E.T.S. de Ingeniería Informática | |
dc.relation.degree | Máster Universitario en I.A. Avanzada: Fundamentos, Métodos y Aplicaciones | |
dc.relation.department | Inteligencia Artificial | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es | |
dc.title | Enhanced preprocessing and adaptive weighted loss function for improved for white matter hyperintensity segmentation with convolutional neural networks. | es |
dc.type | tesis de maestría | es |
dc.type | master thesis | en |
dspace.entity.type | Publication |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Duque_Asens_Pablo_TFM.pdf
- Tamaño:
- 4.26 MB
- Formato:
- Adobe Portable Document Format