Publicación: Enhanced preprocessing and adaptive weighted loss function for improved for white matter hyperintensity segmentation with convolutional neural networks.
Cargando...
Fecha
2020-10-06
Autores
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Universidad Nacional de Educación a Distancia (España). Escuela Técnica Superior de Ingeniería Informática. Departamento de Inteligencia Artificial.
Resumen
There is a great interest in automating White Matter Hyperintensities (WMH) segmentation due to their importance in the medical eld as well as the great amount of inter- and intra-observer variability that appears when it is manually segmented in magnetic resonance imaging. In this work we present a multistep tailored preprocessing consisting mainly of brain extraction, intensity contrast enhancement, subject based slice cropping and intensity standardization. The segmentation task is then performed by a fully convolutional neural network with attention gates which employs a customized loss function based on the dice similarity coecient and the F1 score. Experimental results on the white matter hyperintensities segmentation challenge [Kuijf et al., 2019] show that our proposed preprocessing improves segmentation, that attention gated U-Net further improves segmentation tasks compared to the original U-Net and our proposed loss function has the potential to improve lesion-wise F1 on DSC based segmentations.
Descripción
Categorías UNESCO
Palabras clave
Citación
Centro
Facultades y escuelas::E.T.S. de Ingeniería Informática
Departamento
Inteligencia Artificial