Fecha
2020-10-06
Editor/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Universidad Nacional de Educación a Distancia (España). Escuela Técnica Superior de Ingeniería Informática. Departamento de Inteligencia Artificial.

Citas

plumx
0 citas en WOS
0 citas en
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
There is a great interest in automating White Matter Hyperintensities (WMH) segmentation due to their importance in the medical eld as well as the great amount of inter- and intra-observer variability that appears when it is manually segmented in magnetic resonance imaging. In this work we present a multistep tailored preprocessing consisting mainly of brain extraction, intensity contrast enhancement, subject based slice cropping and intensity standardization. The segmentation task is then performed by a fully convolutional neural network with attention gates which employs a customized loss function based on the dice similarity coecient and the F1 score. Experimental results on the white matter hyperintensities segmentation challenge [Kuijf et al., 2019] show that our proposed preprocessing improves segmentation, that attention gated U-Net further improves segmentation tasks compared to the original U-Net and our proposed loss function has the potential to improve lesion-wise F1 on DSC based segmentations.
Descripción
Categorías UNESCO
Palabras clave
Citación
Centro
E.T.S. de Ingeniería Informática
Departamento
Inteligencia Artificial
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra
DOI