Publicación:
Numerical solution to a Parabolic-ODE Solow model with spatial diffusion and technology-induced motility

dc.contributor.authorUreña, N.
dc.contributor.authorVargas Ureña, Antonio Manuel
dc.date.accessioned2024-12-17T12:11:00Z
dc.date.available2024-12-17T12:11:00Z
dc.date.issued2024-04-08
dc.descriptionThis is an Accepted Manuscript of an article published by Elsevier in "Journal of Computational and Applied Mathematics, Volume 447, 2024, 115913", available at: https://doi.org/10.1016/j.cam.2024.115913. (https://www.sciencedirect.com/science/article/pii/S0377042724001638) Este es el manuscrito aceptado del artículo publicado por Elsevier en "Journal of Computational and Applied Mathematics, Volume 447, 2024, 115913", disponible en línea: https://doi.org/10.1016/j.cam.2024.115913. (https://www.sciencedirect.com/science/article/pii/S0377042724001638)
dc.description.abstractThis work studies a parabolic-ODE PDE’s system which describes the evolution of the physical capital “k” and technological progress “A”, using a meshless method in one and two dimensional bounded domain with regular boundary. The well-known Solow model is extended by considering the spatial diffusion of both capital and technology. Moreover, we study the case in which no spatial diffusion of the technology progress occurs. For such models, we propound schemes based on the Generalized Finite Difference method and prove the convergence of the numerical solution to the continuous one. Several examples show the dynamics of the model for a wide range of parameters. These examples illustrate the accuary of the numerical method.en
dc.description.versionVersión enviada (preprint)
dc.identifier.citationN. Ureña, A.M. Vargas, Numerical solution to a Parabolic-ODE Solow model with spatial diffusion and technology-induced motility, Journal of Computational and Applied Mathematics, Volume 447, 2024, 115913, ISSN 0377-0427, https://doi.org/10.1016/j.cam.2024.115913
dc.identifier.doihttps://doi.org/10.1016/j.cam.2024.115913
dc.identifier.issn1879-1778
dc.identifier.urihttps://hdl.handle.net/20.500.14468/24954
dc.journal.titleJournal of Computational and Applied Mathematics
dc.journal.volume447
dc.language.isoen
dc.page.initial115913
dc.publisherScienceDirect
dc.relation.centerFacultades y escuelas::E.T.S. de Ingenieros Industriales
dc.relation.departmentMatemática Aplicada I
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
dc.subject12 Matemáticas::1206 Análisis numérico
dc.subject53 Ciencias Económicas::5307 Teoría económica::5307.07 Previsión económica
dc.subject.keywordsSolow modelen
dc.subject.keywordsGeneralized Finite Differenceen
dc.subject.keywordsMeshless methoden
dc.subject.keywordsParabolic PDEsen
dc.titleNumerical solution to a Parabolic-ODE Solow model with spatial diffusion and technology-induced motilityen
dc.typeartículoes
dc.typejournal articleen
dspace.entity.typePublication
relation.isAuthorOfPublication6d700201-394b-4442-b0f1-dbe2a6703081
relation.isAuthorOfPublication.latestForDiscovery6d700201-394b-4442-b0f1-dbe2a6703081
Archivos
Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
VargasUrena_AntonioManuel_Numerical solution to a Parabolic-ODE Solow model.pdf
Tamaño:
1.27 MB
Formato:
Adobe Portable Document Format