Publicación: Improving classication of pollen grain images of the POLEN23E dataset deep learning
dc.contributor.author | Sevillano Plaza, Victor | |
dc.contributor.director | Aznarte Mellado, José Luis | |
dc.date.accessioned | 2024-05-20T12:33:51Z | |
dc.date.available | 2024-05-20T12:33:51Z | |
dc.date.issued | 2019-09-19 | |
dc.description.abstract | In palynology, the visual classication of pollen grains from dierent species is a hard task which is usually tackled by human operators using microscopes. Its complete automatization would save a high quantity of resources and provide valuable improvements especially for allergy-related information systems, but also for other application elds as paleoclimate reconstruction, quality control of honey-based products, collection of evi- dences in criminal investigations or fabric dating and tracking. This paper presents three state-of-the-art deep learning classication methods applied to the recently published POLEN23E image dataset. The three methods make use of convolutional neural networks: the rst one is strictly based on the idea of transfer learning, the second one is based on feature extraction and the third one represents a hybrid approach, combining transfer learning and feature extraction. The results from the three methods are indeed very good, reaching over 99% correct classication rates in the training set of images and over 96% in images not previously seen by the models where other authors reported around 70%. | en |
dc.description.version | versión final | |
dc.identifier.uri | https://hdl.handle.net/20.500.14468/14521 | |
dc.language.iso | en | |
dc.publisher | Universidad Nacional de Educación a Distancia (España). Escuela Técnica Superior de Ingeniería Informática. Departamento de Inteligencia Artificial. | |
dc.relation.center | Facultades y escuelas::E.T.S. de Ingeniería Informática | |
dc.relation.degree | Máster Universitario en I.A. Avanzada: Fundamentos, Métodos y Aplicaciones | |
dc.relation.department | Inteligencia Artificial | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es | |
dc.title | Improving classication of pollen grain images of the POLEN23E dataset deep learning | es |
dc.type | tesis de maestría | es |
dc.type | master thesis | en |
dspace.entity.type | Publication |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Sevillano_Plaza_Victor_TFM.pdf
- Tamaño:
- 5.51 MB
- Formato:
- Adobe Portable Document Format