Publicación:
Improving classication of pollen grain images of the POLEN23E dataset deep learning

Cargando...
Miniatura
Fecha
2019-09-19
Editor/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Universidad Nacional de Educación a Distancia (España). Escuela Técnica Superior de Ingeniería Informática. Departamento de Inteligencia Artificial.
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
In palynology, the visual classication of pollen grains from dierent species is a hard task which is usually tackled by human operators using microscopes. Its complete automatization would save a high quantity of resources and provide valuable improvements especially for allergy-related information systems, but also for other application elds as paleoclimate reconstruction, quality control of honey-based products, collection of evi- dences in criminal investigations or fabric dating and tracking. This paper presents three state-of-the-art deep learning classication methods applied to the recently published POLEN23E image dataset. The three methods make use of convolutional neural networks: the rst one is strictly based on the idea of transfer learning, the second one is based on feature extraction and the third one represents a hybrid approach, combining transfer learning and feature extraction. The results from the three methods are indeed very good, reaching over 99% correct classication rates in the training set of images and over 96% in images not previously seen by the models where other authors reported around 70%.
Descripción
Categorías UNESCO
Palabras clave
Citación
Centro
Facultades y escuelas::E.T.S. de Ingeniería Informática
Departamento
Inteligencia Artificial
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra
DOI