Publicación:
Master Dissertation : Information Retrieval for Question Answering based on Distributed Representations

dc.contributor.authorSagrado Sala, Ana
dc.contributor.directorRodrigo Yuste, Álvaro
dc.contributor.directorLópez Ostenero, Fernando
dc.date.accessioned2024-05-20T12:27:31Z
dc.date.available2024-05-20T12:27:31Z
dc.date.issued2022-02-01
dc.description.abstractCommonly used methods for information retrieval such as TFIDF do not capture the semantics of the query or the document. This is a problem, especially in cases where the words used in the queries are not contained in the documents. Therefore more research needs to be done to investigate how text semantics can be applied to information retrieval, especially in cases where the corpus of documents is big and the queries and documents representations need to be compared fast and without the need of re-indexing. In this work, we conduct an exploratory study to investigate different embeddings and deep learning techniques and how this can be applied to the information retrieval task. We show that although existing methods based on word overlapping perform better in general, in particular cases where the word overlap between queries and documents is low, the use of semantic embedding outperforms other methods based on bag of words.en
dc.description.versionversión final
dc.identifier.urihttps://hdl.handle.net/20.500.14468/14297
dc.language.isoen
dc.publisherUniversidad Nacional de Educación a Distancia (España). Escuela Técnica Superior de Ingeniería Informática. Departamento de Lenguajes y Sistemas Informáticos
dc.relation.centerE.T.S. de Ingeniería Informática
dc.relation.degreeMáster Universitario en Tecnologías del Lenguaje (UNED)
dc.relation.departmentLenguajes y Sistemas Informáticos
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
dc.titleMaster Dissertation : Information Retrieval for Question Answering based on Distributed Representationses
dc.typetesis de maestríaes
dc.typemaster thesisen
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
SagradoAna_TFM.pdf
Tamaño:
1.72 MB
Formato:
Adobe Portable Document Format