Publicación: Master Dissertation : Information Retrieval for Question Answering based on Distributed Representations
Archivos
Fecha
2022-02-01
Autores
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Universidad Nacional de Educación a Distancia (España). Escuela Técnica Superior de Ingeniería Informática. Departamento de Lenguajes y Sistemas Informáticos
Resumen
Commonly used methods for information retrieval such as TFIDF do not capture the semantics of the query or the document. This is a problem, especially in cases where the words used in the queries are not contained in the documents. Therefore more research needs to be done to investigate how text semantics can be applied to information retrieval, especially in cases where the corpus of documents is big and the queries and documents representations need to be compared fast and without the need of re-indexing. In this work, we conduct an exploratory study to investigate different embeddings and deep learning techniques and how this can be applied to the information retrieval task. We show that although existing methods based on word overlapping perform better in general, in particular cases where the word overlap between queries and documents is low, the use of semantic embedding outperforms other methods based on bag of words.
Descripción
Categorías UNESCO
Palabras clave
Citación
Centro
Facultades y escuelas::E.T.S. de Ingeniería Informática
Departamento
Lenguajes y Sistemas Informáticos