Persona:
Rubio Alvir, Eva María

Cargando...
Foto de perfil
Dirección de correo electrónico
ORCID
0000-0001-8385-3540
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Rubio Alvir
Nombre de pila
Eva María
Nombre

Resultados de la búsqueda

Mostrando 1 - 10 de 18
  • Publicación
    The Role of Surfactant Structure on the Development of a Sustainable and Eective Cutting Fluid for Machining Titanium Alloys
    (MDPI, 2020-10-19) Benedicto Bardolet, Elisabet; Carou Porto, Diego; Santacruz, Coral; Rubio Alvir, Eva María
    A novel direct method based on infrared reflection absorption spectroscopy (IRRAS) and carbon elemental analysis has been developed for the quantitative determination of fatty acid ester on Ti6Al4V surface. The new approach involves the IR spectra and carbon analysis of a Ti6Al4V strip treated with a surfactant and ester emulsion adjusted to pH 9.2 with 2-aminoethanol. The results are dependent on the ester and surfactant concentration. The analytical signals are the integral value of the CH2 and CO signals of the IR spectra and the carbon content. The main advantage of the proposed method is that the analysis made directly on the metal surface allows knowing the film forming ability of the emulsion. The method may be useful for research and development of more environmentally friendly water-based metalworking fluids for the metal industry.
  • Publicación
    Analysis of Force Signals for the Estimation of Surface Roughness during Robot-Assisted Polishing
    (MDPI, 2018-08-15) Teti, Roberto; Agustina Tejerizo, Beatriz De; Marín Martín, Marta María; Rubio Alvir, Eva María
    In this study feature extraction of force signals detected during robot-assisted polishing processes was carried out to estimate the surface roughness during the process. The purpose was to collect significant features from the signal that allow the determination of the end point of the polishing process based on surface roughness. For this objective, dry polishing turning tests were performed on a Robot-Assisted Polishing (RAP) machine (STRECON NanoRAP 200) during three polishing sessions, using the same polishing conditions. Along the tests, force signals were acquired and offline surface roughness measurements were taken at the end of each polishing session. As a main conclusion, it can be affirmed, regarding the force signal, that features extracted from both time and frequency domains are valuable data for the estimation of surface roughness.
  • Publicación
    Repairing Hybrid Mg–Al–Mg Components Using Sustainable Cooling Systems
    (MDPI, 2020-01-15) Blanco, David; Paulo Davim, Joao; Rubio Alvir, Eva María; Marín Martín, Marta María
    This paper focused on the maintenance or repair of holes made using hybrid Mg–Al–Mg components by drilling, using two sustainable cooling techniques (dry machining and cold compressed air) and taking surface roughness on the inside of the holes as the response variable. The novelty of the work is in proving that the repair operations of the multi-material components (magnesium–aluminum–magnesium) and the parts made of aluminum and magnesium (separately) but assembled to form a higher component can be done simultaneously, thus reducing the time and cost of the assembly and disassembly of this type of component. The study is based on a design of experiments (DOE) defined as a product of a full factorial 23 and a block of two factors (3 × 2). Based on our findings, we propose that the analyzed operations are feasible under sustainable conditions and, in particular, under dry machining. Also, the results depend on the machining order.
  • Publicación
    A novel method for the determination of fatty acid esters in aqueous emulsion on Ti6Al4V surface with IRRAS and carbon quantification
    (Elsevier, 2018-12-01) Benedicto Bardolet, Elisabet; Carou Porto, Diego; Batlle, L.; Rubio Alvir, Eva María
    A novel direct method based on infrared reflection absorption spectroscopy (IRRAS) and carbon elemental analysis has been developed for the quantitative determination of fatty acid ester on Ti6Al4V surface. The new approach involves the IR spectra and carbon analysis of a Ti6Al4V strip treated with a surfactant and ester emulsion adjusted to pH 9.2 with 2-aminoethanol. The results are dependent on the ester and surfactant concentration. The analytical signals are the integral value of the CH2 and CO signals of the IR spectra and the carbon content. The main advantage of the proposed method is that the analysis made directly on the metal surface allows knowing the film forming ability of the emulsion. The method may be useful for research and development of more environmentally friendly water-based metalworking fluids for the metal industry.
  • Publicación
    Influence of the Main Blown Film Extrusion Process Parameters on the Mechanical Properties of a High-Density Polyethylene Hexene Copolymer and Linear Low-Density Polyethylene Butene Copolymer Blend Used for Plastic Bags
    (MDPI, 2023-11-09) Cuesta, Francisco; Camacho López, Ana María; Rubio Alvir, Eva María
    Polyethylene plastic bags manufactured via blown film extrusion have different quality specifications depending on their intended use. It is known that the mechanical properties of a film depend on the process parameters established, but little is known concerning how they affect one another, even more so due to the variety of polyethylene materials and processing techniques. This study focuses on establishing a proper correspondence of important mechanical properties like the dart impact, tensile strength at break, and elongation at break with commonly used process parameters like the blow-up ratio, take-up ratio, thickness reduction, and neck height, for a high-density polyethylene hexene copolymer and a linear low-density polyethylene butene copolymer blend film. Because this polyethylene mixture is an anisotropic material, interesting R2 values equal to or higher than 0.90 were found: a BUR with elongation at break and tensile strength at break in the MD and TD, a TUR with elongation at break in the MD and tensile strength at break in the MD and TD, and a TR with elongation at break and tensile strength at break in the MD. Also, a relationship between the dart impact and both the neck height and thickness were found.
  • Publicación
    Sustainable Processes in Aluminium, Magnesium, and Titanium Alloys Applied to the Transport Sector: A Review
    (MDPI, 2021-12-22) Blanco, David; Lorente Pedreille, Raquel María; Saéz Nuño, María Ana; Rubio Alvir, Eva María
    The reduction of consumption and pollutant emissions is a top priority for the transport sector. One working line is the substitution of conventional structural materials with lightweight materials such as metallic alloys of aluminium, titanium, and/or magnesium. For this reason, and considering that the number of related articles is lower than the existing number of other structural lightweight materials, it is considered very convenient and helpful to carry out a systematic analysis of their latest trends through Open Access literature. A methodology adapted from the PRISMA statement is applied, in order to guarantee unbiasedness and quality in selecting literature and research. The final selection is made up of the 40 most cited research papers from 2015–2020, with an average of 20.6 citations per article. Turning and drilling are the most trending machining processes, and there is particular interest in the study of sustainable cooling, such as dry machining, cryogenic cooling, and MQL. In addition, another trending topic is multi-materials and joining dissimilar materials with guarantees. Additive manufacturing has also been identified as an increasingly trending theme, appearing in 18% of the selected studies. This work is complemented with summary tables of the most cited Open Access articles on sustainable machining and cooling, multi-materials or hybrid components, and additive manufacturing.
  • Publicación
    Thicknesses/Roughness Relationship in Mg-Al-Mg and Mg-Ti-Mg Hybrid Component Plates for Drilled Aeronautical Lightweight Parts
    (MDPI, 2020-11-19) Blanco, David; Sáenz De Pipaón, José Manuel; Rubio Alvir, Eva María; Marín Martín, Marta María
    Multimaterial hybrid compounds formed from lightweight structural materials have been acquiring great importance in recent years in the aeronautical and automotive sectors, where they are replacing traditional materials to reduce the mass of vehicles; this will enable either an increase in the action ratio or a reduction in the fuel consumption of vehicles and, in short, will lead to savings in transport costs and a reduction in polluting emissions. Besides, the implementation of production and consumption models based on the circular economy is becoming more and more important, where the repair and, for this purpose, the use of recyclable materials, is crucial. In this context, the analysis of a repair process is carried out by re-drilling Mg-Al-Mg multimaterial components using experimental design (DoE) based on Taguchi methodology, an analysis of variance (ANOVA) and descriptive statistics. The study concludes which are the significant factors and interactions of the process, comparing the results with previous similar studies, and establishing bases to determine the optimum thicknesses of hybrid magnesium-based component plates of drilled parts in the aeronautical industry, guaranteeing surface roughness requirements in repair and maintenance operations throughout their lifetime.
  • Publicación
    Sustainable Lubrication/Cooling Systems for Efficient Turning Operations of γ‑TiAl Parts from the Aeronautic Industry
    (Springer, 2023-05-01) Benedicto Bardolet, Elisabet; Aubouy, Laurent; Saéz Nuño, María Ana; Rubio Alvir, Eva María
    This paper presents the study of the finishing, repair, and maintenance turning operations of gamma titanium aluminide (γ-TiAl) parts from the aeronautic industry, with the aim to evaluate different sustainable lubrication/cooling environments, including a newly developed synthetic ester water-based metalworking fluid (EcoMWF) to replace mineral-based MWF (MWF). The systems considered in this work are dry, cold-compressed air, minimum quantity lubrication (MQL), cryogenic, and flood on turning of a new and relatively low explored titanium alloy, γ-TiAl. Therefore, the influence of machining parameters and insert type on tool wear, surface roughness, roundness, and cutting temperature have been investigated for each environment. Results detailed in this study showed a significant influence of the lubrication/cooling systems on the machinability of γ-TiAl. The study also revealed that the sustainability of turning γ-TiAl could be improved under the cryogenic system and the new EcoMWF, keeping the same machining performance as common mineral-based MWF.
  • Publicación
    Parametric Analysis of the Mandrel Geometrical Data in a Cold Expansion Process of Small Holes Drilled in Thick Plates
    (MDPI, 2019-12-08) Calaf Chica, José; Teti, Roberto; Segreto, Tiziana; Marín Martín, Marta María; Rubio Alvir, Eva María
    Cold expansion technology is a cold-forming process widely used in aeronautics to extend the fatigue life of riveted and bolted holes. During this process, an oversized mandrel is pushed through the hole in order to yield it and generate compressive residual stresses contributing to the fatigue life extension of the hole. In this paper, a parametric analysis of the mandrel geometrical data (inlet angle straight zone length and diametric interference) and their influence on the residual stresses was carried out using a finite element method (FEM). The obtained results were compared with the conclusions presented in a previous parametric FEM analysis on the influence of the swage geometry in a swaging cold-forming process of gun barrels. This process could be considered, in a simplified way, as a scale-up of the cold expansion process of small holes, and this investigation demonstrated the influence of the diameter ratio (K) on the relation between the mandrel or swage geometry and the residual stresses obtained after the cold-forming process.
  • Publicación
    Formulation of SustainableWater-Based Cutting Fluids with Polyol Esters for Machining Titanium Alloys
    (MDPI, 2021-05-08) Benedicto Bardolet, Elisabet; Aubouy, Laurent; Saéz Nuño, María Ana; Rubio Alvir, Eva María::virtual::3588::600; Rubio Alvir, Eva María; Rubio Alvir, Eva María; Rubio Alvir, Eva María
    The machinability of titanium alloys still represents a demanding challenge and the development of new clean technologies to lubricate and cool is greatly needed. As a sustainable alternative to mineral oil, esters have shown excellent performance during machining. Herein, the aim of this work is to investigate the influence of esters’ molecular structure in oil-in-water emulsions and their interaction with the surface to form a lubricating film, thus improving the efficiency of the cutting fluid. The lubricity performance and tool wear protection are studied through film formation analysis and the tapping process on Ti6Al4V. The results show that the lubricity performance is improved by increasing the formation of the organic film on the metal surface, which depends on the ester’s molecular structure and its ability to adsorb on the surface against other surface-active compounds. Among the cutting fluids, noteworthy results are obtained using trimethylolpropane trioleate, which increases the lubricating film formation (containing 62% ester), thus improving the lubricity by up to 12% and reducing the torque increase due to tool wear by 26.8%. This work could be very useful for fields where often use difficult-to-machine materials—such as Ti6Al4V or γ-TiAl—which require large amounts of cutting fluids, since the formulation developed will allow the processes to be more efficient and sustainable.