Persona: González Boticario, Jesús
Cargando...
Dirección de correo electrónico
ORCID
0000-0003-4949-9220
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
González Boticario
Nombre de pila
Jesús
Nombre
11 resultados
Resultados de la búsqueda
Mostrando 1 - 10 de 11
Publicación Changing technological infrastructure and services in higher education : towards a student-centred approach(2005-02-12) González Boticario, JesúsPublicación Red de Innovación Docente Accesibilidad y Diversidad Funcional en la Educación Superior: Análisis y desarrollo de los Servicios TIC requeridos(UNED, 2009-09) Campo, Elena del; Finat Walford, Cecile; González Boticario, Jesús; Saneiro Silva, María del Mar; Rodríguez Ascaso, AlejandroPublicación Fundamentos de la virtualización : experiencia en investigación y formación del profesorado(Facultad de Ciencias UNED, 2001-02-23) González Boticario, JesúsPublicación Alf : un entorno abierto para el desarrollo de comunidades virtuales de trabajo y cursos adaptados a la educación superior(2005-02-23) Raffenne, Emmanuelle; Aguado, M.; Arroyo, D.; Cordova, M. A.; Guzmán Sánchez, José Luis; Hermira, S.; Ortíz, J.; Pesquera, A.; Morales, R.; Romojaro Gómez, Héctor; Valiente, S.; Carmona, G.; Tejedor, D.; Alejo, J. A.; García Saiz, Tomás; González Boticario, Jesús; Pastor Vargas, RafaelAlf, entorno de trabajo, comunidades virtuales, enseñanza superiorPublicación Improving autonomous vehicle automation through human-system interaction(EUROSIS) Fernandez Matellan, Raul; Martin Gomez, David; Tena Gago, David; Puertas Ramírez, David; González Boticario, JesúsSelf-driving cars (a.k.a. Autonomous Vehicles) have many challenges to tackle before having them fully deployed in our roads and cities. A critical one, which has been somehow neglected till recently, is to consider the driver in the system-user loop of vehicle performance. The purpose here is to tackle some of the current pending challenges involved in scaling up the level of autonomy of these systems. We have designed two user-vehicle experiences in two different sites with a common methodology that serves as an umbrella to collect all features required to model the driver-user. These two sites allow us to contrast and fine-tune this modelling issue. The approach consists in following a Learning Apprentice approach, where both the user behaviour and the system behaviour are learned and improved in a symbiotic ecosystem. This paper focuses on discussing the advantages of this approach and the main issues that require further research.Publicación An Intra-Subject Approach Based on the Application of HMM to Predict Concentration in Educational Contexts from Nonintrusive Physiological Signals in Real-World Situations(MDPI, 2021-03-04) Serrano Mamolar, Ana; Arevalillo Herráez, Miguel; Chicote Huete, Guillermo; González Boticario, Jesús; https://orcid.org/0000-0002-0027-7128; https://orcid.org/0000-0002-0350-2079; https://orcid.org/0000-0002-7736-5572Previous research has proven the strong influence of emotions on student engagement and motivation. Therefore, emotion recognition is becoming very relevant in educational scenarios, but there is no standard method for predicting students’ affects. However, physiological signals have been widely used in educational contexts. Some physiological signals have shown a high accuracy in detecting emotions because they reflect spontaneous affect-related information, which is fresh and does not require additional control or interpretation. Most proposed works use measuring equipment for which applicability in real-world scenarios is limited because of its high cost and intrusiveness. To tackle this problem, in this work, we analyse the feasibility of developing low-cost and nonintrusive devices to obtain a high detection accuracy from easy-to-capture signals. By using both inter-subject and intra-subject models, we present an experimental study that aims to explore the potential application of Hidden Markov Models (HMM) to predict the concentration state from 4 commonly used physiological signals, namely heart rate, breath rate, skin conductance and skin temperature. We also study the effect of combining these four signals and analyse their potential use in an educational context in terms of intrusiveness, cost and accuracy. The results show that a high accuracy can be achieved with three of the signals when using HMM-based intra-subject models. However, inter-subject models, which are meant to obtain subject-independent approaches for affect detection, fail at the same task.Publicación Stakeholder Perspectives on the Ethics of AI in Distance-Based Higher Education(Athabasca University, 2023) Holmes, Wayne; Iniesto, Francisco; Anastopoulou, Stamatina; González Boticario, Jesús; https://orcid.org/0000-0002-8352-1594; https://orcid.org/0000-0003-3946-3056; https://orcid.org/0000-0003-2550-2237Increasingly, Artificial Intelligence (AI) is having an impact on distance-based higher education, where it is revealing multiple ethical issues. However, to date, there has been limited research addressing the perspectives of key stakeholders about these developments. The study presented in this paper sought to address this gap by investigating the perspectives of three key groups of stakeholders in distance-based higher education: students, teachers, and institutions. Empirical data collected in two workshops and a survey helped identify what concerns these stakeholders had about the ethics of AI in distance-based higher education. A theoretical framework for the ethics of AI in education was used to analyse that data and helped identify what was missing. In this exploratory study, there was no attempt to prioritise issues as more, or less, important. Instead, the value of the study reported in this paper derives from (a) the breadth and detail of the issues that have been identified, and (b) their categorisation in a unifying framework. Together these provide a foundation for future research and may also usefully inform future institutional implementation and practice.Publicación Impact of Physiological Signals Acquisition in the Emotional Support Provided in Learning Scenarios(MDPI, 2019-10-17) Uria Rivas, R.; Rodriguez Sanchez, Cristina; Santos, Olga C.; Vaquero, Joaquin; Jesus G. Boticario; González Boticario, Jesús; https://orcid.org/0000-0001-9243-2166; https://orcid.org/0000-0002-9281-4209; https://orcid.org/0000-0002-6976-0564Physiological sensors can be used to detect changes in the emotional state of users with affective computing. This has lately been applied in the educational domain, aimed to better support learners during the learning process. For this purpose, we have developed the AICARP (Ambient Intelligence Context-aware Affective Recommender Platform) infrastructure, which detects changes in the emotional state of the user and provides personalized multisensorial support to help manage the emotional state by taking advantage of ambient intelligence features. We have developed a third version of this infrastructure, AICARP.V3, which addresses several problems detected in the data acquisition stage of the second version, (i.e., intrusion of the pulse sensor, poor resolution and low signal to noise ratio in the galvanic skin response sensor and slow response time of the temperature sensor) and extends the capabilities to integrate new actuators. This improved incorporates a new acquisition platform (shield) called PhyAS (Physiological Acquisition Shield), which reduces the number of control units to only one, and supports both gathering physiological signals with better precision and delivering multisensory feedback with more flexibility, by means of new actuators that can be added/discarded on top of just that single shield. The improvements in the quality of the acquired signals allow better recognition of the emotional states. Thereof, AICARP.V3 gives a more accurate personalized emotional support to the user, based on a rule-based approach that triggers multisensorial feedback, if necessary. This represents progress in solving an open problem: develop systems that perform as effectively as a human expert in a complex task such as the recognition of emotional statesPublicación Some insights into the impact of affective information when delivering feedback to students(Taylor and Francis Group, 2018-07-26) Cabestrero Alonso, Raúl; Quirós Expósito, Pilar; Santos, Olga C.; Salmeron Majadas, Sergio; Uria Rivas, Raul; González Boticario, Jesús; Arnau, David; Arevalillo Herráez, Miguel; Ferri, Francesc J.The relation between affect-driven feedback and engagement on a given task has been largely investigated. This relation can be used to make personalised instructional decisions and/or modify the affect content within the feedback. However, although it is generally assumed that providing encouraging feedback to students should help them adopt a state of flow, there are instances where those messages might result counterproductive. In this paper, we present a case study with 48 secondary school students using an Intelligent Tutoring System for arithmetical word problem solving. This system, which makes some common assumptions on how to relate affective state with performance, takes into account subjective (user's affective state) and objective information (previous problem performance) to decide the upcoming difficulty levels and the type of affective feedback to be delivered. Surprisingly, results revealed that feedback was more effective when no emotional content was included, and lead to the conclusion that purely instructional and concise help messages are more important than the emotional reinforcement contained therein. This finding shows that this is still an open issue. Different settings present different constraints generating related compounding factors that affect obtained results. This research confirms that new approaches are required to determine when, how and where affect-driven feedback is needed. Affect-driven feedback, engagement and their mutual relation have been largely investigated. Student's interactions combined with their emotional state can be used to make personalised instructional decisions and/or modify the affect content within the feedback, aiming to entice engagement on the task. However, although it is generally assumed that providing encouraging feedback to the students should help them adopt a state of flow, there are instances where those encouraging messages might result counterproductive. In this paper, we analyze these issues in terms of a case study with 48 secondary school students using an Intelligent Tutoring System for arithmetical word problem solving. This system, which makes some common assumptions on how to relate affective state with performance, takes into account subjective (user's affective state) and objective (previous problem performance) information to decide the difficulty level of the next exercise and the type of affective feedback to be delivered. Surprisingly, findings revealed that feedback was more effective when no emotional content was included in the messages, and lead to the conclusion that purely instructional and concise help messages are more important than the emotional reinforcement contained therein. This finding, which coincides with related work, shows that this is still an open issue. Different settings present different constraints and there are related compounding factors that affect obtained results, such as the message's contents and their target, how to measure the effect of the message on engagement through affective variables considering other issues involved, and to what extent engagement can be manipulated solely in terms of affective feedback. The contribution here is that this research confirms that new approaches are needed to determine when, how and where affect-driven feedback is needed. In particular, based on our previous experience in developing educational recommender systems, we suggest the combination of user-centred design methodologies with data mining methods to yield a more effective feedback.Publicación A Machine Learning Approach to Leverage Individual Keyboard and Mouse Interaction Behavior From Multiple Users in Real-World Learning Scenarios(Browse Journals & Magazines, 2018) Salmeron Majadas, Sergio; Baker, Ryan S.; Santos, Olga C.; González Boticario, Jesús; https://orcid.org/0000-0002-0544-0887; https://orcid.org/0000-0002-3051-3232; https://orcid.org/0000-0002-9281-4209There is strong evidence that emotions influence the learning process. For this reason, we explore the relevance of individual and general mouse and keyboard interaction patterns in real-world settings while learners perform free text tasks. To this end, we have modeled users' mouse movements and keystroke dynamics with data mining techniques, building on previous related research and extending it in terms of some critical modeling issues that may have an impact on detection results. Inspired by practice in affective computing where physiological sensors are used, we argue for the creation of an interaction baseline model, as a reference point in the way how learners interact with the keyboard and mouse. To make the proposed affective model feasible, we have adopted a simplified 2-D self-labeling approach for labeling the users' affective state. Our approach to affect detection improves results when there is a small amount of data instances available and does not require additional affect-oriented tasks from the learners. Specifically, learners are only asked to self-reflect their emotional state after finishing the tasks and immediately selecting two values in the affect scale. The approach we have followed aims to distill two types of interaction patterns: 1) within-subject patterns (from a single participant) and 2) between-subject patterns (across all participants). Doing this, we aim to combine both the approaches as modeling factors, thus taking advantage of individual and general interaction patterns to predict affect.