Persona: Vargas Ureña, Antonio Manuel
Cargando...
Dirección de correo electrónico
ORCID
0000-0002-2235-0111
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Vargas Ureña
Nombre de pila
Antonio Manuel
Nombre
5 resultados
Resultados de la búsqueda
Mostrando 1 - 5 de 5
Publicación Solving a chemotaxis-haptotaxis system in 2D using Generalized Finite Difference Method(ScienceDirect, 2020-05-27) Benito Muñoz, Juan J.; García Hernández, Miguel Ángel; Gavete Corvinos, Luis Antonio; Negreanu, Mihaela; Ureña, Francisco; Vargas Ureña, Antonio Manuel; https://orcid.org/0000-0002-9092-9619; https://orcid.org/0000-0001-6581-5671; https://orcid.org/0000-0003-0533-3464We study a mathematical model of cancer cell invasion of tissue (extracellular matrix) consisting of a system of reaction-diffusion-taxis partial differential equations which describes the interactions between cancer cells, the matrix degrading enzyme and the host tissue. We analyze the local stability of the constant equilibrium solutions to the chemotaxis-haptotaxis system, we derive a discretization of the system by means of the Generalized Finite Difference Method (GFDM) and we prove the convergence of the discrete solution to the analytical one. Also, we provide several numerical examples on the applications of this meshless method over regular and irregular domains.Publicación On the numerical solution to a parabolic-elliptic system with chemotactic and periodic terms using Generalized Finite Differences(Elsevier, 2020-04) Benito Muñoz, Juan J.; García, Ángel; Gavete, Luis; Negreanu, Mihaela; Ureña, Francisco; Vargas Ureña, Antonio ManuelIn the present paper we propose the Generalized Finite Difference Method (GFDM) for numerical solution of a cross-diffusion system with chemotactic terms. We derive the discretization of the system using a GFD scheme in order to prove and illustrate that the uniform stability behavior/ convergence of the continuous model is also preserved for the discrete model. We prove the convergence of the explicit method and give the conditions of convergence. Extensive numerical experiments are presented to illustrate the accuracy, efficiency and robustness of the GFDM.Publicación Solving a fully parabolic chemotaxis system with periodic asymptotic behavior using Generalized Finite Difference Method(Elsevier, 2020-11) Benito Muñoz, Juan J.; García, Ángel; Gavete, Luis; Negreanu, Mihaela; Ureña, Francisco; Vargas Ureña, Antonio ManuelThis work studies a parabolic-parabolic chemotactic PDE's system which describes the evolution of a biological population “U” and a chemical substance “V”, using a Generalized Finite Difference Method, in a two dimensional bounded domain with regular boundary. In a previous paper [12], the authors asserted global classical solvability and periodic asymptotic behavior for the continuous system in 2D. In this continuous work, a rigorous proof of the global classical solvability to the discretization of the model proposed in [12] is presented in two dimensional space. Numerical experiments concerning the convergence in space and in time, and long-time simulations are presented in order to illustrate the accuracy, efficiency and robustness of the developed numerical algorithms.Publicación Two finite difference methods for solving the Zakharov–Kuznetsov-Modified Equal-Width equation(Elsevier, 2023-08) Benito Muñoz, Juan J.; García, Ángel; Negreanu, Mihaela; Ureña, Francisco; Vargas Ureña, Antonio ManuelWe derive the implementation of two meshless methods, the Space–Time Cloud Method and the Generalized Finite Difference Method, for solving the Zakharov–Kuznetsov-Modified Equal-Width equation, a nonlinear wave equation used to model the propagation of waves in nonuniform media. Also, we prove convergence of the GFD explicit scheme. We compare both methods in terms of accuracy and efficiency (execution times).Publicación Solving a reaction-di usion system with chemotaxis and non-local terms using Generalized Finite Di erence Method. Study of the convergence(Elsevier, 2021-06) Benito Muñoz, Juan J.; García, Ángel; Gavete, Luis; Negreanu, Mihaela; Ureña, Francisco; Vargas Ureña, Antonio ManuelIn this paper a parabolic–parabolic chemotaxis system of PDEs that describes the evolution of a population with non-local terms is studied. We derive the discretization of the system using the meshless method called Generalized Finite Difference Method. We prove the conditional convergence of the solution obtained from the numerical method to the analytical solution in the two-dimensional case. Several examples of the application are given to illustrate the accuracy and efficiency of the numerical method. We also present two examples of a parabolic–elliptic model, as generalized by the parabolic–parabolic system addressed in this paper, to show the validity of the discretization of the non-local terms.