Persona:
Moreno Álvarez, Sergio

Cargando...
Foto de perfil
Dirección de correo electrónico
ORCID
0000-0002-1858-9920
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Moreno Álvarez
Nombre de pila
Sergio
Nombre

Resultados de la búsqueda

Mostrando 1 - 10 de 15
  • Publicación
    Federated learning meets remote sensing
    (ELSEVIER, 2024-12-01) Moreno Álvarez, Sergio; Paoletti, Mercedes Eugenia; Sanchez Fernandez, Andres J.; Rico Gallego, Juan Antonio; han, lirong; Haut, Juan M.; https://orcid.org/0000-0003-1030-3729; https://orcid.org/0000-0001-6743-3570; https://orcid.org/0000-0002-4264-7473; https://orcid.org/0000-0002-8613-7037; https://orcid.org/0000-0001-6701-961X
    Remote sensing (RS) imagery provides invaluable insights into characterizing the Earth’s land surface within the scope of Earth observation (EO). Technological advances in capture instrumentation, coupled with the rise in the number of EO missions aimed at data acquisition, have significantly increased the volume of accessible RS data. This abundance of information has alleviated the challenge of insufficient training samples, a common issue in the application of machine learning (ML) techniques. In this context, crowd-sourced data play a crucial role in gathering diverse information from multiple sources, resulting in heterogeneous datasets that enable applications to harness a more comprehensive spatial coverage of the surface. However, the sensitive nature of RS data requires ensuring the privacy of the complete collection. Consequently, federated learning (FL) emerges as a privacy-preserving solution, allowing collaborators to combine such information from decentralized private data collections to build efficient global models. This paper explores the convergence between the FL and RS domains, specifically in developing data classifiers. To this aim, an extensive set of experiments is conducted to analyze the properties and performance of novel FL methodologies. The main emphasis is on evaluating the influence of such heterogeneous and disjoint data among collaborating clients. Moreover, scalability is evaluated for a growing number of clients, and resilience is assessed against Byzantine attacks. Finally, the work concludes with future directions and serves as the opening of a new research avenue for developing efficient RS applications under the FL paradigm. The source code is publicly available at https://github.com/hpc-unex/FLmeetsRS.
  • Publicación
    AAtt-CNN: Automatic Attention-Based Convolutional Neural Networks for Hyperspectral Image Classification
    (IEEE, 2023) Paoletti, Mercedes Eugenia; Moreno Álvarez, Sergio; xue, yu; Haut, Juan M.; Plaza, Antonio; https://orcid.org/0000-0003-1030-3729; https://orcid.org/0000-0002-9069-7547; https://orcid.org/0000-0001-6701-961X; https://orcid.org/0000-0002-9613-1659
    Convolutional models have provided outstanding performance in the analysis of hyperspectral images (HSIs). These architectures are carefully designed to extract intricate information from nonlinear features for classification tasks. Notwithstanding their results, model architectures are manually engineered and further optimized for generalized feature extraction. In general terms, deep architectures are time-consuming for complex scenarios, since they require fine-tuning. Neural architecture search (NAS) has emerged as a suitable approach to tackle this shortcoming. In parallel, modern attention-based methods have boosted the recognition of sophisticated features. The search for optimal neural architectures combined with attention procedures motivates the development of this work. This article develops a new method to automatically design and optimize convolutional neural networks (CNNs) for HSI classification using channel-based attention mechanisms. Specifically, 1-D and spectral–spatial (3-D) classifiers are considered to handle the large amount of information contained in HSIs from different perspectives. Furthermore, the proposed automatic attention-based CNN ( AAtt-CNN ) method meets the requirement to lower the large computational overheads associated with architectural search. It is compared with current state-of-the-art (SOTA) classifiers. Our experiments, conducted using a wide range of HSI images, demonstrate that AAtt-CNN succeeds in finding optimal architectures for classification, leading to SOTA results.
  • Publicación
    Deep shared proxy construction hashing for cross-modal remote sensing image fast target retrieval
    (ELSEVIER, 2024) han, lirong; Paoletti, Mercedes Eugenia; Moreno Álvarez, Sergio; Haut, Juan M.; Plaza, Antonio; https://orcid.org/0000-0002-8613-7037; https://orcid.org/0000-0003-1030-3729; https://orcid.org/0000-0001-6701-961X; https://orcid.org/0000-0002-9613-1659
    The diversity of remote sensing (RS) image modalities has expanded alongside advancements in RS technologies. A plethora of optical, multispectral, and hyperspectral RS images offer rich geographic class information. The ability to swiftly access multiple RS image modalities is crucial for fully harnessing the potential of RS imagery. In this work, an innovative method, called Deep Shared Proxy Construction Hashing (DSPCH), is introduced for cross-modal hyperspectral scene target retrieval using accessible RS images such as optical and sketch. Initially, a shared proxy hash code is generated in the hash space for each land use class. Subsequently, an end-to-end deep hash network is built to generate hash codes for hyperspectral pixels and accessible RS images. Furthermore, a proxy hash loss function is designed to optimize the proposed deep hashing network, aiming to generate hash codes that closely resemble the corresponding proxy hash code. Finally, two benchmark datasets are established for cross-modal hyperspectral and accessible RS image retrieval, allowing us to conduct extensive experiments with these datasets. Our experimental results validate that the novel DSPCH method can efficiently and effectively achieve RS image cross-modal target retrieval, opening up new avenues in the field of cross-modal RS image retrieval
  • Publicación
    Cloud Implementation of Extreme Learning Machine for Hyperspectral Image Classification
    (IEEE, 2023) Haut, Juan M.; Moreno Álvarez, Sergio; Moreno Ávila, Enrique; Ayma Quirita, Victor Andrés; Pastor Vargas, Rafael; Paoletti, Mercedes Eugenia; https://orcid.org/0000-0001-6701-961X; https://orcid.org/0000-0003-2987-2761; https://orcid.org/0000-0002-4089-9538; https://orcid.org/0000-0003-1030-3729
    Classifying remotely sensed hyperspectral images (HSIs) became a computationally demanding task given the extensive information contained throughout the spectral dimension. Furthermore, burgeoning data volumes compound inherent computational and storage challenges for data processing and classification purposes. Given their distributed processing capabilities, cloud environments have emerged as feasible solutions to handle these hurdles. This encourages the development of innovative distributed classification algorithms that take full advantage of the processing capabilities of such environments. Recently, computational-efficient methods have been implemented to boost network convergence by reducing the required training calculations. This letter develops a novel cloud-based distributed implementation of the extreme learning machine ( CC-ELM ) algorithm for efficient HSI classification. The proposal implements a fault-tolerant and scalable computing design while avoiding traditional batch-based backpropagation. CC-ELM has been evaluated over state-of-the-art HSI classification benchmarks, yielding promising results and proving the feasibility of cloud environments for large remote sensing and HSI data volumes processing. The code available at https://github.com/mhaut/scalable-ELM-HSI
  • Publicación
    Cloud-Based Analysis of Large-Scale Hyperspectral Imagery for Oil Spill Detection
    (IEEE, 2024) Haut, Juan M.; Moreno Álvarez, Sergio; Pastor Vargas, Rafael; Pérez García, Ámbar; Paoletti, Mercedes Eugenia; https://orcid.org/0000-0001-6701-961X; https://orcid.org/0000-0002-4089-9538; https://orcid.org/0000-0002-2943-6348; https://orcid.org/0000-0003-1030-3729
    Spectral indices are of fundamental importance in providing insights into the distinctive characteristics of oil spills, making them indispensable tools for effective action planning. The normalized difference oil index (NDOI) is a reliable metric and suitable for the detection of coastal oil spills, effectively leveraging the visible and near-infrared (VNIR) spectral bands offered by commercial sensors. The present study explores the calculation of NDOI with a primary focus on leveraging remotely sensed imagery with rich spectral data. This undertaking necessitates a robust infrastructure to handle and process large datasets, thereby demanding significant memory resources and ensuring scalability. To overcome these challenges, a novel cloud-based approach is proposed in this study to conduct the distributed implementation of the NDOI calculation. This approach offers an accessible and intuitive solution, empowering developers to harness the benefits of cloud platforms. The evaluation of the proposal is conducted by assessing its performance using the scene acquired by the airborne visible infrared imaging spectrometer (AVIRIS) sensor during the 2010 oil rig disaster in the Gulf of Mexico. The catastrophic nature of the event and the subsequent challenges underscore the importance of remote sensing (RS) in facilitating decision-making processes. In this context, cloud-based approaches have emerged as a prominent technological advancement in the RS field. The experimental results demonstrate noteworthy performance by the proposed cloud-based approach and pave the path for future research for fast decision-making applications in scalable environments.
  • Publicación
    Hyperspectral Image Analysis Using Cloud-Based Support Vector Machines
    (Springer, 2024) Haut, Juan M.; Franco Valiente, José M.; Paoletti, Mercedes Eugenia; Moreno Álvarez, Sergio; Pardo-Diaz, Alfonso; https://orcid.org/0000-0001-6701-961X; https://orcid.org/0000-0002-3880-6697; https://orcid.org/0000-0003-1030-3729
    Hyperspectral image processing techniques involve time-consuming calculations due to the large volume and complexity of the data. Indeed, hyperspectral scenes contain a wealth of spatial and spectral information thanks to the hundreds of narrow and continuous bands collected across the electromagnetic spectrum. Predictive models, particularly supervised machine learning classifiers, take advantage of this information to predict the pixel categories of images through a training set of real observations. Most notably, the Support Vector Machine (SVM) has demonstrate impressive accuracy results for image classification. Notwithstanding the performance offered by SVMs, dealing with such a large volume of data is computationally challenging. In this paper, a scalable and high-performance cloud-based approach for distributed training of SVM is proposed. The proposal address the overwhelming amount of remote sensing (RS) data information through a parallel training allocation. The implementation is performed over a memory-efficient Apache Spark distributed environment. Experiments are performed on a benchmark of real hyperspectral scenes to show the robustness of the proposal. Obtained results demonstrate efficient classification whilst optimising data processing in terms of training times.
  • Publicación
    Optimizing Distributed Deep Learning in Heterogeneous Computing Platforms for Remote Sensing Data Classification
    (IEEE, 2022) Moreno Álvarez, Sergio; Paoletti, Mercedes Eugenia; Rico Gallego, Juan Antonio; Cavallaro, Gabriele; Haut, Juan M.; https://orcid.org/0000-0003-1030-3729; https://orcid.org/0000-0002-4264-7473; https://orcid.org/0000-0002-3239-9904; https://orcid.org/0000-0001-6701-961X
    Applications from Remote Sensing (RS) unveiled unique challenges to Deep Learning (DL) due to the high volume and complexity of their data. On the one hand, deep neural network architectures have the capability to automatically ex-tract informative features from RS data. On the other hand, these models have massive amounts of tunable parameters, re-quiring high computational capabilities. Distributed DL with data parallelism on High-Performance Computing (HPC) sys-tems have proved necessary in dealing with the demands of DL models. Nevertheless, a single HPC system can be al-ready highly heterogeneous and include different computing resources with uneven processing power. In this context, a standard data parallelism strategy does not partition the data efficiently according to the available computing resources. This paper proposes an alternative approach to compute the gradient, which guarantees that the contribution to the gradi-ent calculation is proportional to the processing speed of each DL model's replica. The experimental results are obtained in a heterogeneous HPC system with RS data and demon-strate that the proposed approach provides a significant training speed up and gain in the global accuracy compared to one of the state-of-the-art distributed DL framework.
  • Publicación
    Remote Sensing Image Classification Using CNNs With Balanced Gradient for Distributed Heterogeneous Computing
    (IEEE, 2022) Moreno Álvarez, Sergio; Paoletti, Mercedes Eugenia; Cavallaro, Gabriele; Rico Gallego, Juan Antonio; Haut, Juan M.; https://orcid.org/0000-0003-1030-3729; https://orcid.org/0000-0002-3239-9904; https://orcid.org/0000-0002-4264-7473; https://orcid.org/0000-0001-6701-961X
    Land-cover classification methods are based on the processing of large image volumes to accurately extract representative features. Particularly, convolutional models provide notable characterization properties for image classification tasks. Distributed learning mechanisms on high-performance computing platforms have been proposed to speed up the processing, while achieving an efficient feature extraction. High-performance computing platforms are commonly composed of a combination of central processing units (CPUs) and graphics processing units (GPUs) with different computational capabilities. As a result, current homogeneous workload distribution techniques for deep learning (DL) become obsolete due to their inefficient use of computational resources. To address this, new computational balancing proposals, such as heterogeneous data parallelism, have been implemented. Nevertheless, these techniques should be improved to handle the peculiarities of working with heterogeneous data workloads in the training of distributed DL models. The objective of handling heterogeneous workloads for current platforms motivates the development of this work. This letter proposes an innovative heterogeneous gradient calculation applied to land-cover classification tasks through convolutional models, considering the data amount assigned to each device in the platform while maintaining the acceleration. Extensive experimentation has been conducted on multiple datasets, considering different deep models on heterogeneous platforms to demonstrate the performance of the proposed methodology.
  • Publicación
    A Comprehensive Survey of Imbalance Correction Techniques for Hyperspectral Data Classification
    (IEEE, 2023) Paoletti, Mercedes Eugenia; Mogollón Gutiérrez, Óscar; Moreno Álvarez, Sergio; Sancho, José Carlos; Haut, Juan M.; https://orcid.org/0000-0003-1030-3729; https://orcid.org/0000-0003-2980-9236; https://orcid.org/0000-0002-4584-6945; https://orcid.org/0000-0001-6701-961X
    Land-cover classification is an important topic for remotely sensed hyperspectral (HS) data exploitation. In this regard, HS classifiers have to face important challenges, such as the high spectral redundancy, as well as noise, present in the data, and the fact that obtaining accurate labeled training data for supervised classification is expensive and time-consuming. As a result, the availability of large amounts of training samples, needed to alleviate the so-called Hughes phenomenon, is often unfeasible in practice. The class-imbalance problem, which results from the uneven distribution of labeled samples per class, is also a very challenging factor for HS classifiers. In this article, a comprehensive review of oversampling techniques is provided, which mitigate the aforementioned issues by generating new samples for the minority classes. More specifically, this article pursues a twofold objective. First, it reviews the most relevant oversampling methods that can be adopted according to the nature of HS data. Second, it provides a comprehensive experimental study and comparison, which are useful to derive practical conclusions about the performance of oversampling techniques in different HS image-based applications.
  • Publicación
    Enhancing Distributed Neural Network Training Through Node-Based Communications
    (IEEE, 2023) Moreno Álvarez, Sergio; Paoletti, Mercedes Eugenia; Cavallaro, Gabriele; Haut, Juan M.; https://orcid.org/0000-0003-1030-3729; https://orcid.org/0000-0002-3239-9904; https://orcid.org/0000-0001-6701-961X
    The amount of data needed to effectively train modern deep neural architectures has grown significantly, leading to increased computational requirements. These intensive computations are tackled by the combination of last generation computing resources, such as accelerators, or classic processing units. Nevertheless, gradient communication remains as the major bottleneck, hindering the efficiency notwithstanding the improvements in runtimes obtained through data parallelism strategies. Data parallelism involves all processes in a global exchange of potentially high amount of data, which may impede the achievement of the desired speedup and the elimination of noticeable delays or bottlenecks. As a result, communication latency issues pose a significant challenge that profoundly impacts the performance on distributed platforms. This research presents node-based optimization steps to significantly reduce the gradient exchange between model replicas whilst ensuring model convergence. The proposal serves as a versatile communication scheme, suitable for integration into a wide range of general-purpose deep neural network (DNN) algorithms. The optimization takes into consideration the specific location of each replica within the platform. To demonstrate the effectiveness, different neural network approaches and datasets with disjoint properties are used. In addition, multiple types of applications are considered to demonstrate the robustness and versatility of our proposal. The experimental results show a global training time reduction whilst slightly improving accuracy. Code: https://github.com/mhaut/eDNNcomm.