Publicación: Hyperspectral Image Analysis Using Cloud-Based Support Vector Machines
No hay miniatura disponible
Fecha
2024
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Springer
Resumen
Hyperspectral image processing techniques involve time-consuming calculations due to the large volume and complexity of the data. Indeed, hyperspectral scenes contain a wealth of spatial and spectral information thanks to the hundreds of narrow and continuous bands collected across the electromagnetic spectrum. Predictive models, particularly supervised machine learning classifiers, take advantage of this information to predict the pixel categories of images through a training set of real observations. Most notably, the Support Vector Machine (SVM) has demonstrate impressive accuracy results for image classification. Notwithstanding the performance offered by SVMs, dealing with such a large volume of data is computationally challenging. In this paper, a scalable and high-performance cloud-based approach for distributed training of SVM is proposed. The proposal address the overwhelming amount of remote sensing (RS) data information through a parallel training allocation. The implementation is performed over a memory-efficient Apache Spark distributed environment. Experiments are performed on a benchmark of real hyperspectral scenes to show the robustness of the proposal. Obtained results demonstrate efficient classification whilst optimising data processing in terms of training times.
Descripción
The registered version of this article, first published in “SN Computer Science, 2024, vol. 5", is available online at the publisher's website: Springer, https://doi.org/10.1007/s42979-024-03073-z
La versión registrada de este artículo, publicado por primera vez en “SN Computer Science, 2024, vol. 5", está disponible en línea en el sitio web del editor: Springer, https://doi.org/10.1007/s42979-024-03073-z
Categorías UNESCO
Palabras clave
Cloud computing (CC), Support vector machines (SVMs), Hyperspectral imaging (HSIs), Machine learning (ML), Remote sensing (RS)
Citación
Haut, J.M., Franco-Valiente, J.M., Paoletti, M.E. et al. Hyperspectral Image Analysis Using Cloud-Based Support Vector Machines. SN COMPUT. SCI. 5, 719 (2024). https://doi.org/10.1007/s42979-024-03073-z
Centro
Facultades y escuelas::E.T.S. de Ingeniería Informática
Departamento
Lenguajes y Sistemas Informáticos