Persona: Collado Guirao, Paloma
Cargando...
Dirección de correo electrónico
ORCID
0000-0002-2925-6806
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Collado Guirao
Nombre de pila
Paloma
Nombre
3 resultados
Resultados de la búsqueda
Mostrando 1 - 3 de 3
Publicación G Protein-Coupled Estrogen Receptor Immunoreactivity Fluctuates During the Estrous Cycle and Show Sex Differences in the Amygdala and Dorsal Hippocampus(Frontiers Media, 2020) Llorente, Ricardo; Marraudino, Marilena; Bonaldo, Brigitta; Simon Areces, Julia; Abellanas Pérez, Pedro; Rivero Aguilar, Marina; Fernández García, José Manuel; Pino Osuna, María José; Garcia Segura, Luis Miguel; Grassi, Daniela; Carrillo Urbano, Beatriz; Collado Guirao, PalomaG protein-coupled estrogen receptor (GPER) in the amygdala and the dorsal hippocampus mediates actions of estradiol on anxiety, social recognition and spatial memory. In addition, GPER participates in the estrogenic regulation of synaptic function in the amygdala and in the process of adult neurogenesis in the dentate gyrus. While the distribution of the canonical estrogen receptors α and β in the amygdala and dorsal hippocampus are well characterized, little is known about the regional distribution of GPER in these brain regions and whether this distribution is affected by sex or the stages of the estrous cycle. In this study we performed a morphometric analysis of GPER immunoreactivity in the posterodorsal medial, anteroventral medial, basolateral, basomedial and central subdivisions of the amygdala and in all the histological layers of CA1 and the dentate gyrus of the dorsal hippocampal formation. The number of GPER immunoreactive cells was estimated in these different structures. GPER immunoreactivity was detected in all the assessed subdivisions of the amygdaloid nucleus and dorsal hippocampal formation. The number of GPER immunoreactive cells was higher in males than in estrus females in the central (P = 0.001) and the posterodorsal medial amygdala (P < 0.05); higher in males than in diestrus females in the strata orients (P < 0.01) and radiatum-lacunosum-moleculare (P < 0.05) of CA1-CA3 and in the molecular layer of the dentate gyrus (P < 0.01); higher in diestrus females than in males in the basolateral amygdala (P < 0.05); higher in diestrus females than in estrus females in the central (P < 0.01), posterodorsal medial (P < 0.01) and basolateral amygdala (P < 0.01) and higher in estrus females than in diestrus females in the strata oriens (P < 0.05) and radiatum-lacunosum-moleculare (P < 0.05) of CA1-CA3 and in the molecular layer (P < 0.05) and the hilus of the dentate gyrus (P < 0.05). The findings suggest that estrogenic regulation of the amygdala and hippocampus through GPER may be different in males and in females and may fluctuate during the estrous cycle.Publicación Blocking of Estradiol Receptors ERα, ERβ and GPER During Development, Differentially Alters Energy Metabolism in Male and Female Rats(Elsevier, 2020) Díaz González, Francisca; Chowen, Julie A.; Grassi, Daniela; Pinos Sánchez, Helena; Carrillo Urbano, Beatriz; Collado Guirao, PalomaEstradiol not only participates in the regulation of energy metabolism in adulthood, but also during the first stages of life as it modulates the alterations induced by under- and over-nutrition. The objectives of the present study were to determine: 1) If estradiol is involved in the normal programming of energy metabolism in rats; 2) If there is a specific window of time for this programming and 3) If males and females are differentially vulnerable to the action of this hormone. Estrogen receptors (ER) α, ERβ and GPER were blocked by their specific antagonists MPP, PHTPP and G15, respectively, from postnatal day (P) 1 (the day of birth) to P5 or from P5 to P13. Physiological parameters such as body weight, fat depots and caloric intake were then analysed at P90. Hypothalamic AgRP, POMC, MC4R, ERα, ERβ and GPER mRNA levels and plasma levels of estradiol, were also studied. We found that blocking ER receptors from P5 to P13 significantly decreases long-term body weight in males and hypothalamic POMC mRNA levels in females. The blocking of ERs from P1 to P5 only affected plasma estradiol levels in females. The present results indicate programming actions of estradiol from P5 to P13 on body weight in male and POMC expression in female rats and emphasize the importance of including both sexes in metabolic studies. It is necessary to unravel the mechanisms that underlie the actions of estradiol on food intake, both during development and in adulthood, and to determine how this programming differentially takes place in males and females.Publicación Neonatal inhibition of androgen activity alters the programming of body weight and orexinergic peptides differentially in male and female rats(Elsevier, 2024-02-13) Fernández García, José Manuel; Grassi, Daniela; Blanco, Noemí; Ballesta, Antonio; Arevalo, María de los Ángeles; Pino Osuna, María José; Carrillo Urbano, Beatriz; García Úbeda, Rocío; Primo Chulvi, Ulises; Collado Guirao, PalomaThe involvement of androgens in the regulation of energy metabolism has been demonstrated. The main objective of the present research was to study the involvement of androgens in both the programming of energy metabolism and the regulatory peptides associated with feeding. For this purpose, androgen receptors and the main metabolic pathways of testosterone were inhibited during the first five days of postnatal life in male and female Wistar rats. Pups received a daily s.c. injection from the day of birth, postnatal day (P) 1, to P5 of Flu- tamide (a competitive inhibitor of androgen receptors), Letrozole (an aromatase inhibitor), Finasteride (a 5- alpha-reductase inhibitor) or vehicle. Body weight, food intake and fat pads were measured. Moreover, hypo- thalamic Agouti-related peptide (AgRP), neuropeptide Y (NPY), orexin, and proopiomelanocortin (POMC) were analyzed by quantitative real-time polymerase chain reaction assay. The inhibition of androgenic activity during the first five days of life produced a significant decrease in body weight in females at P90 but did not affect this parameter in males. Moreover, the inhibition of aromatase decreased hypothalamic AgRP mRNA levels in males while the inhibition of 5α-reductase decreased hypothalamic AgRP and orexin mRNA levels in female rats. Finally, food intake and visceral fat, but not subcutaneous fat, were affected in both males and females depending on which testosterone metabolic pathway was inhibited. Our results highlight the differential involvement of androgens in the programming of energy metabolism as well as the AgRP and orexin systems during development in male and female rats