Persona:
Aranda Escolástico, Ernesto

Cargando...
Foto de perfil
Dirección de correo electrónico
ORCID
0000-0003-0801-9286
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Aranda Escolástico
Nombre de pila
Ernesto
Nombre

Resultados de la búsqueda

Mostrando 1 - 4 de 4
  • Publicación
    Customized Online Laboratory Experiments: A General Tool and Its Application to the Furuta Inverted Pendulum [Focus on Education]
    (Institute of Electrical and Electronics Engineers (IEEE), 2019-09-17) Galán, Daniel; Chaos García, Dictino; Torre Cubillo, Luis de la; Aranda Escolástico, Ernesto; Heradio Gil, Rubén
    Because of online laboratories (labs), students can perform experimental activities from their mobile devices and/or computers. This article proposes an experimentation environment (EE) that extends the capabilities of interactive online labs with scripting language support. Thus, control engineering students can specify complex experiments, avoid routine tasks, and empirically test controllers they made themselves.
  • Publicación
    A bibliometric analysis of off-line handwritten document analysis literature (1990–2020)
    (Elsevier, 2022-05) Ruiz Parrado, Victoria; Vélez, José F.; Heradio Gil, Rubén; Aranda Escolástico, Ernesto; Sánchez Ávila, Ángel
    Providing computers with the ability to process handwriting is both important and challenging, since many difficulties (e.g., different writing styles, alphabets, languages, etc.) need to be overcome for addressing a variety of problems (text recognition, signature verification, writer identification, word spotting, etc.). This paper reviews the growing literature on off-line handwritten document analysis over the last thirty years. A sample of 5389 articles is examined using bibliometric techniques. Using bibliometric techniques, this paper identifies (i) the most influential articles in the area, (ii) the most productive authors and their collaboration networks, (iii) the countries and institutions that have led research on the topic, (iv) the journals and conferences that have published most papers, and (v) the most relevant research topics (and their related tasks and methodologies) and their evolution over the years.
  • Publicación
    A bibliometric analysis of off-line handwritten document analysis literature (1990–2020)
    (Elsevier, 2022-05) Ruiz Parrado, Victoria; Vélez, José F.; Heradio Gil, Rubén; Aranda Escolástico, Ernesto; Sánchez Ávila, Ángel
    Providing computers with the ability to process handwriting is both important and challenging, since many difficulties (e.g., different writing styles, alphabets, languages, etc.) need to be overcome for addressing a variety of problems (text recognition, signature verification, writer identification, word spotting, etc.). This paper reviews the growing literature on off-line handwritten document analysis over the last thirty years. A sample of 5389 articles is examined using bibliometric techniques. Using bibliometric techniques, this paper identifies (i) the most influential articles in the area, (ii) the most productive authors and their collaboration networks, (iii) the countries and institutions that have led research on the topic, (iv) the journals and conferences that have published most papers, and (v) the most relevant research topics (and their related tasks and methodologies) and their evolution over the years.
  • Publicación
    Customized Online Laboratory Experiments: A General Tool and Its Application to the Furuta Inverted Pendulum [Focus on Education]
    (Institute of Electrical and Electronics Engineers (IEEE), 2019-09-17) Galán, Daniel; Chaos García, Dictino; Torre Cubillo, Luis de la; Aranda Escolástico, Ernesto; Heradio Gil, Rubén
    Because of online laboratories (labs), students can perform experimental activities from their mobile devices and/or computers. This article proposes an experimentation environment (EE) that extends the capabilities of interactive online labs with scripting language support. Thus, control engineering students can specify complex experiments, avoid routine tasks, and empirically test controllers they made themselves.