Examinando por Autor "han, lirong"
Mostrando 1 - 6 de 6
Resultados por página
Opciones de ordenación
Publicación Correlation-Aware Averaging for Federated Learning in Remote Sensing Data Classification(IEEE, 2024) Moreno Álvarez, Sergio; han, lirong; Paoletti, Mercedes Eugenia; Haut, Juan Mario; https://orcid.org/0000-0002-8613-7037; https://orcid.org/0000-0003-1030-3729; https://orcid.org/0000-0001-6701-961XThe increasing volume of remote sensing (RS) data offers substantial benefits for the extraction and interpretation of features from these scenes. Indeed, the detection of distinguishing features among captured materials and objects is crucial for classification purposes, such as in environmental monitoring applications. In these algorithms, the classes characterized by lower correlation often exhibit more distinct and discernible features, facilitating their differentiation in a straightforward manner. Nevertheless, the rise of Big Data provides a wide range of data acquired through multiple decentralized devices, where its susceptibility to be shared among various users or clients presents challenges in safeguarding privacy. Meanwhile, global features for similar classes are required to be learned for generalization purposes in the classification process. To address this, federated learning (FL) emerges as a privacy efficient decentralized solution. Firstly, in such scenarios, proprietary data is held by individual clients participating in the training of a global model. Secondly, clients may encounter challenges in identifying features that are more distinguishable within the data distributions of other clients. In this study, in order to handle these challenges, a novel methodology is proposed that considers the least correlated classes (LCCs) included in each client data distribution. This strategy exploits the distinctive features between classes, thereby enhancing performance and generalization ability in a secure and private environment.Publicación Deep Attention-Driven HSI Scene Classification Based on Inverted Dot-Product(Institute of Electrical and Electronics Engineers Inc., 2022) Paoletti, Mercedes Eugenia; Tao, Xuanwen; han, lirong; Wu, Zhaoyue; Moreno Álvarez, Sergio; Haut, Juan M.; https://orcid.org/0000-0003-1030-3729; https://orcid.org/0000-0003-1093-0079; https://orcid.org/0000-0002-8613-7037; https://orcid.org/0000-0002-6797-2440; https://orcid.org/0000-0001-6701-961XCapsule networks have been a breakthrough in the field of automatic image analysis, opening a new frontier in the art for image classification. Nevertheless, these models were initially designed for RGB images and naively applying these techniques to remote sensing hyperspectral images (HSI) may lead to sub-optimal behaviour, blowing up the number of parameters needed to train the model or not correctly modeling the spectral relations between the different layers of the scene. To overcome this drawback, this work implements a new capsule-based architecture with attention mechanism to improve the HSI data processing. The attention mechanism is applied during the concurrent iterative routing procedure through an inverted dot-product attentionPublicación Deep shared proxy construction hashing for cross-modal remote sensing image fast target retrieval(ELSEVIER, 2024) han, lirong; Paoletti, Mercedes Eugenia; Moreno Álvarez, Sergio; Haut, Juan M.; Plaza, Antonio; https://orcid.org/0000-0002-8613-7037; https://orcid.org/0000-0003-1030-3729; https://orcid.org/0000-0001-6701-961X; https://orcid.org/0000-0002-9613-1659The diversity of remote sensing (RS) image modalities has expanded alongside advancements in RS technologies. A plethora of optical, multispectral, and hyperspectral RS images offer rich geographic class information. The ability to swiftly access multiple RS image modalities is crucial for fully harnessing the potential of RS imagery. In this work, an innovative method, called Deep Shared Proxy Construction Hashing (DSPCH), is introduced for cross-modal hyperspectral scene target retrieval using accessible RS images such as optical and sketch. Initially, a shared proxy hash code is generated in the hash space for each land use class. Subsequently, an end-to-end deep hash network is built to generate hash codes for hyperspectral pixels and accessible RS images. Furthermore, a proxy hash loss function is designed to optimize the proposed deep hashing network, aiming to generate hash codes that closely resemble the corresponding proxy hash code. Finally, two benchmark datasets are established for cross-modal hyperspectral and accessible RS image retrieval, allowing us to conduct extensive experiments with these datasets. Our experimental results validate that the novel DSPCH method can efficiently and effectively achieve RS image cross-modal target retrieval, opening up new avenues in the field of cross-modal RS image retrievalPublicación Federated learning meets remote sensing(ELSEVIER, 2024-12-01) Moreno Álvarez, Sergio; Paoletti, Mercedes Eugenia; Sanchez Fernandez, Andres J.; Rico Gallego, Juan Antonio; han, lirong; Haut, Juan M.; https://orcid.org/0000-0003-1030-3729; https://orcid.org/0000-0001-6743-3570; https://orcid.org/0000-0002-4264-7473; https://orcid.org/0000-0002-8613-7037; https://orcid.org/0000-0001-6701-961XRemote sensing (RS) imagery provides invaluable insights into characterizing the Earth’s land surface within the scope of Earth observation (EO). Technological advances in capture instrumentation, coupled with the rise in the number of EO missions aimed at data acquisition, have significantly increased the volume of accessible RS data. This abundance of information has alleviated the challenge of insufficient training samples, a common issue in the application of machine learning (ML) techniques. In this context, crowd-sourced data play a crucial role in gathering diverse information from multiple sources, resulting in heterogeneous datasets that enable applications to harness a more comprehensive spatial coverage of the surface. However, the sensitive nature of RS data requires ensuring the privacy of the complete collection. Consequently, federated learning (FL) emerges as a privacy-preserving solution, allowing collaborators to combine such information from decentralized private data collections to build efficient global models. This paper explores the convergence between the FL and RS domains, specifically in developing data classifiers. To this aim, an extensive set of experiments is conducted to analyze the properties and performance of novel FL methodologies. The main emphasis is on evaluating the influence of such heterogeneous and disjoint data among collaborating clients. Moreover, scalability is evaluated for a growing number of clients, and resilience is assessed against Byzantine attacks. Finally, the work concludes with future directions and serves as the opening of a new research avenue for developing efficient RS applications under the FL paradigm. The source code is publicly available at https://github.com/hpc-unex/FLmeetsRS.Publicación Hashing for Retrieving Long-Tailed Distributed Remote Sensing Images(IEEE, 2024) han, lirong; Paoletti, Mercedes Eugenia; Moreno Álvarez, Sergio; Haut, Juan M.; Pastor Vargas, Rafael; Plaza, Antonio; https://orcid.org/0000-0002-8613-7037; https://orcid.org/0000-0003-1030-3729; https://orcid.org/0000-0001-6701-961X; https://orcid.org/0000-0002-4089-9538; https://orcid.org/0000-0002-9613-1659The widespread availability of remotely sensed datasets establishes a cornerstone for comprehensive image retrieval within the realm of remote sensing (RS). In response, the investigation into hashing-driven retrieval methods garners significance, enabling proficient image acquisition within such extensive data magnitudes. Nevertheless, the used datasets in practical applications are invariably less desirable and with long-tailed distribution. The primary hurdle pertains to the substantial discrepancy in class volumes. Moreover, commonly utilized RS datasets for hashing tasks encompass approximately two–three dozen classes. However, real-world datasets exhibit a randomized number of classes, introducing a challenging variability. This article proposes a new centripetal intensive attention hashing (CIAH) mechanism based on intensive attention features for long-tailed distribution RS image retrieval. Specifically, an intensive attention module (IAM) is adopted to enhance the significant features to facilitate the subsequent generation of representative hash codes. Furthermore, to deal with the inherent imbalance of long-tailed distributed datasets, the utilization of a centripetal loss function is introduced. This endeavor constitutes the inaugural effort toward long-tailed distributed RS image retrieval. In pursuit of this objective, a collection of long-tail datasets is meticulously curated using four widely recognized RS datasets, subsequently disseminated as benchmark datasets. The selected fundamental datasets contain 7, 25, 38, and 45 land-use classes to mimic different real RS datasets. Conducted experiments demonstrate that the proposed methodology attains a performance benchmark that surpasses currently existing methodologies.Publicación Parameter-Free Attention Network for Spectral–Spatial Hyperspectral Image Classification(IEEE, 2023) Paoletti, Mercedes Eugenia; Tao, Xuanwen; han, lirong; Wu, Zhaoyue; Moreno Álvarez, Sergio; Kumar Roy, Swalpa; https://orcid.org/0000-0003-1030-3729; https://orcid.org/0000-0003-1093-0079; https://orcid.org/0000-0002-8613-7037; https://orcid.org/0000-0002-6797-2440; https://orcid.org/0000-0002-6580-3977Hyperspectral images (HSIs) comprise plenty of information in the spatial and spectral domain, which is highly beneficial for performing classification tasks in a very accurate way. Recently, attention mechanisms have been widely used in the HSI classification due to their ability to extract relevant spatial and spectral features. Notwithstanding their positive results, most of the attentional strategies usually introduce a significant number of parameters to be trained, making the models more complex and increasing the computational load. In this article, we develop a new parameter-free attention network for HSI classification. The main advantage of our model is that it does not add parameters to the original network (as opposed to other state-of-the-art approaches) while providing higher classification accuracies. Extensive experimental validations and quantitative comparisons are conducted—using different benchmark HSIs—to illustrate these advantages. The code is available on https://github.com/mhaut/Free2Resnet