Logotipo del repositorio
  • English
  • Español
  • Français
  • Iniciar sesión
    Identificación habilitada exclusivamente para personal de Biblioteca.
    ¿Has olvidado tu contraseña?
Logotipo del repositorio
  • Comunidades
  • Filtrar búsqueda
  • Depositar
  • English
  • Español
  • Français
  • Iniciar sesión
    Identificación habilitada exclusivamente para personal de Biblioteca.
    ¿Has olvidado tu contraseña?
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Rosales Asensio, Enrique"

Mostrando 1 - 12 de 12
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    Publicación
    Adaptive model predictive control for electricity management in the household sector
    (Elsevier, 2022-05) Muñoz Gómez, Antonio Miguel; Rosales Asensio, Enrique; Fernández Aznar, Gregorio; Galán Hernández, Noemi; Colmenar Santos, Antonio
    This paper focuses on the optimisation of electricity consumption in residential buildings. To deal with the increase in electricity consumption, the intermittency of renewable energy generation and grid contingencies, a greater effort is required towards residential management optimisation. A novel adaptive model predictive control algorithm is proposed to achieve this objective. The challenges for this research included recognising and modelling the economic and technical constraints of the sources and appliances and addressing the uncertainties concerning the weather and user behaviour. Data-driven models are developed and trained to predict the user behaviour and buildings. Artificial neural networks and statistical models based on the weighted moving average are proposed to capture the patterns of deferrable and non-deferrable appliances, battery storage, electric vehicles, photovoltaic modules, buildings and grid connections. A dual optimisation method is devised to minimise the electricity bill and achieve thermal comfort. The proposed optimisation solver is a two-step optimisation method based on genetic algorithm and mixed integer linear programming. A comprehensive simulation study was carried out to reveal the effectiveness of the proposed method through a set of simulation scenarios. The results of the quantitative analysis undertaken as part of this study show the effectiveness of the proposed algorithm towards reducing electricity charges and improving grid elasticity.
  • Cargando...
    Miniatura
    Publicación
    Analysis on the electric vehicle with a hybrid storage system and the use of Superconducting magnetic energy storage (SMES)
    (Elsevier, 2021-11) Molina Ibáñeza, Enrique Luis; Rosales Asensio, Enrique; Pérez Molina, Clara María; Colmenar Santos, Antonio; Mur Pérez, Francisco
    Given the current load and power density limitations in electric vehicle (EV) storage systems, it is necessary to study hybrid and control systems in order to optimize their performance and present themselves as a real alternative to internal combustion engine (ICE) vehicles. This implies the development of legislation and specific regulations that enable the research and development of these storage and management systems for hybrid systems. The research presented here aims to analyze the implementation of the SMES (Superconducting Magnetic Energy Storage) energy storage system for the future of electric vehicles. To do this, the need for a hybrid storage system has been taken into account, with several regulatory options, such as the reduction of rates or the promotion of private investments, which allow the technological development of EVs. What is sought is to achieve the market share proposed by the different countries to reduce Greenhouse Gases (GHG), according to their objectives. This approach must be taken from the legislative and regulatory perspective, specific to EVs and charging points, of several countries or regions with different cultures, management models and implementation potential, such as the United States of America (USA), Europe and China. This analysis is associated with the economic study of costs that this storage system may involve in the implementation of EVs to replace ICE vehicles, resulting in possible economic benefits as well as the environmental benefits of the use of EVs. In this analysis, the current high cost of using a hybrid system of these characteristics can be observed with the comparison of three EVs, as well as current data on GHG emissions produced by transport. All this leads to a series of advantages and disadvantages that must be taken into account in order to achieve the objectives that countries have in the coming decades of EV diffusion.
  • Cargando...
    Miniatura
    Publicación
    Aplicabilidad del calor residual de centrales térmicas sitas en la UE–28 en redes de calefacción urbana
    (Universidad Nacional de Educación a Distancia (España). Escuela Internacional de Doctorado. Programa de Doctorado en Tecnologías Industriales, 2016-06-14) Rosales Asensio, Enrique; Colmenar Santos, Antonio
    Alrededor del 80% de la energía utilizada en viviendas tiene como fin último proporcionar calefacción y agua caliente, lo que significa que potencialmente existirían unos 15 000 PJ/año (4100 TWh) a ser satisfechos a través del calor residual de las centrales térmicas o de las industrias. Esta cantidad es inferior al calor residual emitido por las centrales térmicas sitas en la UE–28(19 608 PJ/año), el cual es en su mayoría enviado a torres de refrigeración y generalmente no utilizado para calefactar edificaciones ya que está a una temperatura demasiado baja (típicamente 30 ºC para grandes centrales térmicas) para poder ser empleado económicamente. En la actualidad la calefacción se consigue principalmente a través de combustibles fósiles, lo cual crea problemas económicos, medioambientales y de dependencia energética (nótese que el coste total de energía importada en el año 2013 en la UE–28 fue de 405,8 millardos de euros, no llegando la exportada a los 10 millardos de euros). El propósito de esta tesis es investigar la factibilidad de la utilización conjunta de redes de calefacción urbana y cogeneración en la UE– 28, proponer medidas para eliminar las barreras que lastran su implantación generalizada, formular políticas que permitan dicha implantación, y evaluar las repercusiones económicas, energéticas y medioambientales resultantes de la misma. Para ello, se ha llevado a cabo una evaluación preliminar sobre el coste probable y el impacto de adoptar una utilización generalizada de redes de calefacción urbana y cogeneración al estudiar tres ciudades con condiciones climáticas representativas de la UE–28. A partir de los resultados de dicha evaluación pudo estimarse que, para toda la UE–28 y llevando a cabo la máxima implementación económicamente factible se produciría un ahorro de 95 millardos de euros al año en combustibles y una disminución relativa a la energía primaria demandada de 6400 PJ, todo ello a través de una inversión anualizada de 315 millardos de euros. Esto representa alrededor del 15% del consumo de energía total final de la UE–28 para el año 2013 (46 214,5 PJ). Esta cantidad sería incluso mayor si en esta tesis se hubieran considerado, aparte de las plantas térmicas convencionales, las centrales nucleares existentes en la UE–28. Para conseguir su pleno desarrollo, las empresas que se encarguen de explotar aquellos esquemas que utilicen conjuntamente redes de calefacción urbana y cogeneración deberían disfrutar de unos poderes cuasi-gubernamentales, de tal manera que se reduzcan significativamente los riesgos del mercado y consecuentemente los costes de financiación. Es esencial que todas las evaluaciones económicas relativas a la utilización conjunta de redes de calefacción urbana y cogeneración se lleven a cabo a través de una tasa de descuento adecuada para proyectos infraestructurales (tasa de descuento “social”), la cual y para aquellos proyectos que estén localizados en Europa Occidental es, atendiendo a recomendaciones de la Comisión Europea, de un 3,5%.
  • Cargando...
    Miniatura
    Publicación
    Electric vehicle charging strategy to support renewable energy sources in Europe 2050 low-carbon scenario
    (Elsevier, 2019-09-15) Muñoz Gómez, Antonio Miguel; Rosales Asensio, Enrique; Colmenar Santos, Antonio; López-Rey García-Rojas, África
    The EU has undertaken a thorough reform of its energy model. Current EU 2050 climate commitment sets an 80–95% GHG reduction goal. To reach this goal, the EU must make continued progress towards a low-carbon society. Renewable energy sources and electric vehicle play an important role for a gradual transition. The power grid faces a challenging future due to intermittency and the non-dispatchable nature of wind and solar energy production, but flexibility needs can migrate from generation to load, with the expansion of demand-side resources and storage technologies. A novel grid technique is presented and evaluated in this paper for the optimal integrated operation of renewable resources and electric vehicle to increase penetration of renewable energy. It is proposed a distribute control system to manage a charge and discharge strategy to support mismatching between load and renewable generation thru V2G technology. Demand response, peak saving and ancillary services are introduced to keep a reliable power quality, stable frequency and flatten load profile.
  • Cargando...
    Miniatura
    Publicación
    Legislative and economic aspects for the inclusion of energy reserve by a superconducting magnetic energy storage: Application to the case of the Spanish electrical system
    (Elsevier, 2018-02) Molina Ibáñez, Enrique Luis; Rosales Asensio, Enrique; Blanes Peiró, Jorge Juan; Colmenar Santos, Antonio
    With the encouragement from renewable energies, elements of the electrical system are magnified which make possible a suitable connection to the electrical network. Among others, energy storage systems (ESSs) are emphasized because of their impact. This article discusses two essential aspects to take into account for an ESS, that is the regulatory framework and the economic aspect. In particular, it focuses on superconducting magnetic energy storage (SMES) in the Spanish electrical system. An analysis is performed on the legislation and regulations that apply to energy storage systems, which may affect in a direct or indirect manner its inclusion. This is accompanied by an analysis of the legislation in different countries to assess the situation in Spain in this regard, by comparison. Another point to take into consideration, which is crucial for the correct development and inclusion of this type of elements, is the economic viability- showing the costs of manufacturing and maintenance of these systems. Although it is necessary to keep investigating to lower the costs, economic benefits are appreciated, among other things, owing to the increase of the reliability of the electrical network. This increase of the reliability is resultant from a decrease of the cuts of service and the improvement of the quality of the energy.
  • Cargando...
    Miniatura
    Publicación
    Potencialidad de la energía geotérmica en España: hibridación y aplicación en la industria
    (Universidad Nacional de Educación a Distancia (España). Escuela Internacional de Doctorado. Programa de Doctorado en Tecnologías Industriales, 2021) Palomo Torrejón, Elisabet; Colmenar Santos, Antonio; Rosales Asensio, Enrique
  • Cargando...
    Miniatura
    Publicación
    Simulation of modeling of multi-megawatt photovoltaic plants with high voltage direct current grid integration
    (Elsevier, 2018-05-15) Guinduláin Argandoña, Tomás; Rosales Asensio, Enrique; Molina Ibáñez, Enrique Luis; Blanes Peiró, Jorge Juan; Colmenar Santos, Antonio
    This paper develops an integrated model of multi megawatt PV plant with HVDC (High Voltage Direct Current) or HVAC (High Voltage Alternating Current) network, using the specific software of power electronics PSIM. This model has been developed by functional blocks, including the photovoltaic field itself, the pertinent conversion units for the integration of each network as well as the network type for production. The models allow to obtain transmissions loss for any combination of the three variables on which they depend; network length (km), temperature (°C) and irradiance (W/m2). To verify the validity of the model and demonstrate the distribution advantages of HVDC -even for relatively low-photovoltaic power plants in comparison to the common applications currently used in HVDC networks-, a case study has been used which has led to the conclusion that the use of HVDC networks may be convenient for this type of power generation plants.
  • Cargando...
    Miniatura
    Publicación
    Study on the economics of wind energy through cryptocurrency
    (Elsevier, 2022-11-02) Vega Marcosa, Raúl; Mur Pérez, Francisco; Pérez Molina, Clara María; Rosales Asensio, Enrique; Colmenar Santos, Antonio
    The Green Pact signed by the European Union establishes a trend towards renewable energies to combat the greenhouse gas emissions. Among the technologies used to produce this type of energy, wind power generation technology stands out, which, in countries such as Spain, already has significant installed power. The main problems posed by this technology plans are the uncertainty intervals of wind power and its inclusion in the electricity market, due to the complex price system that does not always favor the producers. The main purpose of this research is to promote the installation of more wind power plants. For this, the installation of cryptocurrency mining equipment is proposed, which will be powered by the generation produced by these wind power plants. The article analyzes the production of cryptocurrencies is a growing business. In the research process, the latest cryptocurrency mining equipment is evaluated. It is analyzed which equipment is the most suitable for its installation in the wind power plant and an economic study is made for the construction project of a large wind power plant. Finally, it will be seen that in this way the amortization time of the facilities decreases and also the project is more attractive for the investor since they can decide between injecting energy into the electrical network or mining cryptocurrencies. If a wind power plant invests in cryptocurrency mining in parallel to the production of electrical energy for the grid, it can decide when to enter the electricity market pool or engage in mining. In this way, the idea of building many more wind power plants becomes more attractive. This would lead to a market where this renewable energy would be much more abundant and the price curve would shift to a lower price, as well as a significant reduction in greenhouse emissions.
  • Cargando...
    Miniatura
    Publicación
    Superconduction Magnetic Energy Storage System (SMES) for distributed supply networks
    (Universidad Nacional de Educación a Distancia (España). Escuela Internacional de Doctorado. Programa de Doctorado en Tecnologías Industriales, 2023) Molina Ibáñez, Enrique Luis; Colmenar Santos, Antonio; Rosales Asensio, Enrique
    Among the technological challenges that arise in the coming years are reliable storage systems to support the large number of renewable energy sources developed and implemented in recent years. In this sense, power storage systems can complement the electrical systems of future distribution networks, mainly a purely electrical storage system, such as the magnetic superconducting storage system, SMES, which consists of a coil of superconducting material capable of storing a certain energy and with a very short response time. To do this, a regulatory and economic analysis of this type of system must be carried out, as well as a technological analysis of the new distribution networks, Smart Grids, and more specifically with Smart Cities, to see the strengths and weaknesses that it can provide to distribution networks. On the other hand, two studies of two possible particular uses of the SMES storage system have been carried out. A first would be the use of a hybrid energy storage system in electric vehicles, where the costs and possible advantages and disadvantages of its use are analyzed. The second would be a possible development for a desalination system with a hybrid supply from a renewable source such as wind power, together with a water reserve and an SMES system.
  • Cargando...
    Miniatura
    Publicación
    Technical approach for the inclusion of superconducting magnetic energy storage in a smart city
    (Elsevier, 2018-09-01) Molina Ibáñez, Enrique Luis; Rosales Asensio, Enrique; Colmenar Santos, Antonio; López-Rey García-Rojas, África
    Smart grids are a concept which is evolving quickly with the implementation of renewable energies and concepts such as Distributed Generation (DG) and micro-grids. Energy storage systems play a very important role in smart grids. The characteristics of smart cities enhance the use of high power density storage systems, such as SMES systems. Because of this, we studied the possibility of adapting these systems in this kind of electrical topology by simulating the effects of an energy storage system with high power density (as SMES). An electrical and control adaptation circuit for storing energy was designed. The circuit consisted of three blocks. The first one was a passive filter LCL. The second was a converter system that allows rectifying of the signal when the system runs in charge mode but acts as an inverter when it changes to discharge mode. Finally, there is a chopper that allows the current levels to be modified. Throughout simulations, we have seen the possibility of controlling the energy supply so as the storage. This permits to adapt to different contingencies which may induce the wiring of the charge in the net, as well as different types of charges. Despite the technical contribution of this kind of systems in the Spanish electrical network, there are big obstacles that would prevent its inclusion in the network, such as the high cost of manufacturing and maintenance compared with other cheaper systems such as superconductors or the low energy density, which limits their use.
  • Cargando...
    Miniatura
    Publicación
    Technical challenges for the optimum penetration of grid-connected photovoltaic systems: Spain as a case study
    (Elsevier, 2020-01) Linares Mena, Ana Rosa; Molina Ibáñez, Enrique Luis; Rosales Asensio, Enrique; Borge-Diez, David; Colmenar Santos, Antonio
    This research reviews the technical requirements of grid-connected photovoltaic power plants to increase their competitiveness and efficiently integrate into the grid to satisfy future demand requirements and grid management challenges, focusing on Spain as a case study. The integration of distributed resources into the electric network, in particular photovoltaic energy, requires an accurate control of the system. The integration of photovoltaic energy has resulted in significant changes to the regulatory framework to ensure proper integration of distributed generation units in the grid. In this study, the requirements of the system operator for the management and smart control are first analysed and then the technical specifications established by the network operator in reference to the components of the facility are evaluated. This analysis identifies the shortcomings of the current legislation and concludes with a summary of the main technical recommendations and future regulatory challenges that need to be undertaken in the future. It is presented as a reference case that can be adapted worldwide.
  • Cargando...
    Miniatura
    Publicación
    Technological improvements in energetic efficiency and sustainability in existing combined-cycle gas turbine (CCGT) power plants
    (Elsevier, 2018-08-01) Gómez Camazón, David; Rosales Asensio, Enrique; Blanes Peiró, Jorge Juan; Colmenar Santos, Antonio
    Data from an existing combined-cycle gas turbine (CCGT) power plant are used to create a computer simulation to allow efficiency and emission calculations, simulation and assessing improvements that apply partial regeneration with solar hybridization. The proposed amendments to this triple-pressure steam-reheat combined cycle (CCC3PR) with 400 MW of net power incorporates a regenerator and thermal energy, from a source of renewable solar energy up to 50 MW, in order to reduce the energy loss in the gas turbine. The calculation and simulation models were created using Visual Basic code. Regeneration and solar hybridization were found to contribute to increasing efficiencies of around 2.25% to 3.29% depending on the loading point. The reduction of gas consumption was between 6.25% and 9.45% and the overall cycle efficiency loss is minimal due to hybridization. There was a loss of the net power of the new cycle but it is considerably lower if than heat from a renewable source is supplied to the cycle. This net power loss has an average value of 7.5% with regeneration only and of 1% with regeneration and hybridization. The reduction of fuel consumption is significant which could result in saving approximately 4 million €/year. Partial regeneration in the gas turbine and solar thermal power in the existing CCGTs provide an interesting possibility for reducing emissions (by 26,167 t/year). In conclusion, partial regeneration with solar hybridization provides an interesting and proven possibility to increase performance and efficiency whilst reducing emissions from the existing CCC3PR.
Enlaces de interés

Aviso legal

Política de privacidad

Política de cookies

Reclamaciones, sugerencias y felicitaciones

Recursos adicionales

Biblioteca UNED

Depósito de datos de investigación

Portal de investigación UNED

InvestigaUNED

Contacto

Teléfono: 913988766 / 6633 / 7891 / 6172

Correo: repositoriobiblioteca@adm.uned.es