Publicación:
Finite difference method for solving fractional differential equations at irregular meshes

Cargando...
Miniatura
Fecha
2021-10-29
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Elsevier
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
This paper presents a novel meshless technique for solving a class of fractional differential equations based on moving least squares and on the existence of a fractional Taylor series for Caputo derivatives. A “Generalized Finite Difference” approach is followed in order to derive a simple discretization of the space fractional derivatives. Consistency, stability and convergence of the method are proved. Several examples illustrating the accuracy of the method are given.
Descripción
The registered version of this article, first published in Mathematics and Computers in Simulation, is available online at the publisher's website: Elsevier, https://doi.org/10.1016/j.matcom.2021.10.010
La versión registrada de este artículo, publicado por primera vez en Mathematics and Computers in Simulation, está disponible en línea en el sitio web del editor: Elsevier, https://doi.org/10.1016/j.matcom.2021.10.010
Categorías UNESCO
Palabras clave
fractional differential equations, caputo fractional derivative, fractional Laplacian, finite difference method, meshless method
Citación
A.M. Vargas, Finite difference method for solving fractional differential equations at irregular meshes, Mathematics and Computers in Simulation, Volume 193, March 2022, Pages 204-216. https://doi.org/10.1016/j.matcom.2021.10.010
Centro
Facultades y escuelas::E.T.S. de Ingenieros Industriales
Departamento
Matemática Aplicada I
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra