Cargando...
Fecha
2022
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Universidad Nacional de Educación a Distancia (España), Universidad Politécnica de Madrid. Departamento de Ingeniería Mecánica
Resumen
Los materiales nano cristalinos (tamaño de grano <100nm) exhiben propiedades mecánicas de mayor magnitud que los materiales con tamaño de grano grueso. La resistencia última a la tensión de un nano cristal de Aluminio (Al) sin defectos es del orden de 7 GPa. En esta investigación, se estudia la influencia del tamaño de grano en la distribución de esfuerzos locales para monocristales fisurados sometidos a cargas monotónicas bajo deformación controlada en modo de carga I. El método multiescala Átomo al continuo (ATC) es implementado usando cantidades atómicas provenientes de resultados de simulaciones de dinámica molecular (DM) y permite la construcción de la simulación por el método de elementos finitos (MEF) para estimar el campo de esfuerzos del material. El campo de esfuerzos locales y la resistencia última se estiman usando la formulación de Hardy y ATC para monocristales de Al. Los resultados para los diferentes tamaños de grano estudiados muestran convergencia con los valores reportados en la literatura. Adicionalmente, se observa que el valor de la resistencia última es independiente del tamaño de grano en los monocristales estudiados.
Nanocrystalline materials (grain size < 100 nm) showed higher mechanical properties than coarse grain materials. Such as the ultimate tensile strength (UTS) of Nanocrystalline Aluminum (Al), which was almost 7 GPa in a perfect single-crystal. In this research, the influence of grain size on the local stress distribution during crack propagation through a concurrent multi-scale method that related the Molecular dynamics (MD) approach and Finite Element Method (FEM) was studied. The atomic-scale quantities were obtained from MD simulations of a single-crystal Al loaded under controlled deformation in mode I. The embedded-atom method (EAM) potential was used in the atomistic sub-domain and a multi-scale model, Atom-to-Continuum (ATC), was implemented to estimate the stress field using a localization function in the FE sub-domain. Local stress fields and UTSs were estimated using Hardy's formulation and ATC for a single crystal of Al. Then, UTSs for different grain sizes of single crystals were evaluated using ATC. The simulation results were according to the reported values in the literature. Additionally, UTSs showed grain size independence for single-crystal samples.
Nanocrystalline materials (grain size < 100 nm) showed higher mechanical properties than coarse grain materials. Such as the ultimate tensile strength (UTS) of Nanocrystalline Aluminum (Al), which was almost 7 GPa in a perfect single-crystal. In this research, the influence of grain size on the local stress distribution during crack propagation through a concurrent multi-scale method that related the Molecular dynamics (MD) approach and Finite Element Method (FEM) was studied. The atomic-scale quantities were obtained from MD simulations of a single-crystal Al loaded under controlled deformation in mode I. The embedded-atom method (EAM) potential was used in the atomistic sub-domain and a multi-scale model, Atom-to-Continuum (ATC), was implemented to estimate the stress field using a localization function in the FE sub-domain. Local stress fields and UTSs were estimated using Hardy's formulation and ATC for a single crystal of Al. Then, UTSs for different grain sizes of single crystals were evaluated using ATC. The simulation results were according to the reported values in the literature. Additionally, UTSs showed grain size independence for single-crystal samples.
Descripción
Categorías UNESCO
Palabras clave
simulación atomística, mecánica del medio continuo, método multiescala, campo de esfuerzo
Citación
Centro
E.T.S. de Ingenieros Industriales
Departamento
Mecánica