Publicación:
Prediction of genomic biomarkers in breast cancer from images of routine histopathology tissue slides of solid tumors using deep learning models

dc.contributor.authorArregui Hernández, Ernesto Santiago
dc.contributor.directorPérez Martín, Jorge
dc.contributor.directorCarrilero Mardones, Mikel
dc.date.accessioned2025-07-08T13:15:44Z
dc.date.available2025-07-08T13:15:44Z
dc.date.issued2025-06
dc.description.abstractThe increasing demand for biomarker testing in oncology highlights the need for scalable and cost-effective alternatives to molecular profiling. This master's thesis investigates whether deep learning (DL) models can predict clinically relevant genomic biomarkers directly from routine histopathology whole-slide images, focusing on PIK3CA gene mutation in breast cancer. The study applies a radiogenomics pipeline that includes tile extraction, stain normalization, and the use of multiple DL architectures. A subset of the TCGA-BRCA dataset was used, selecting diagnostic slides labelled for PIK3CA mutation status. Tiles were extracted and normalized using the Macenko method, then fed into models including VGG-19, ResNet-18, ResNet-50, and Swin Transformer. Two configurations were explored: cross-validation (C-V) ensemble models and single-model training with C-V tuned hyperparameters. Aggregation strategies and thresholding techniques were systematically evaluated to assess their impact on model performance. Performance metrics were computed on an unseen test set composed of subcohorts from medical centers not included in the training phase. A C-V ensemble model using a ResNet-18 pretrained on ImageNet and Macenko stain normalization achieved the best AUROC (0.733), with a sensitivity of 0.817, specificity of 0.451, and an F1 score of 0.757, raising the question of whether predicting PIK3CA mutation status from histopathology alone may ultimately be feasible.en
dc.identifier.citationArregui Hernández, Ernesto Santiago. Trabajo fin de Máster: "Prediction of genomic biomarkers in breast cancer from images of routine histopathology tissue slides of solid tumors using deep learning models". Universidad Nacional de Educación a Distancia (UNED), 2025
dc.identifier.urihttps://hdl.handle.net/20.500.14468/29300
dc.language.isoen
dc.publisherUniversidad Nacional de Educación a Distancia (UNED). E.T.S. de Ingeniería Informática
dc.relation.centerE.T.S. de Ingeniería Informática
dc.relation.degreeMáster universitario en Ingeniería y Ciencia de Datos
dc.relation.departmentInteligencia Artificial
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.uriAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.subject1203.04 Inteligencia artificial
dc.subject.keywordsbreast canceren
dc.subject.keywordsdeep learningen
dc.subject.keywordshistopathologyen
dc.subject.keywordsradiogenomicsen
dc.subject.keywordswhole-slide imagesen
dc.titlePrediction of genomic biomarkers in breast cancer from images of routine histopathology tissue slides of solid tumors using deep learning modelsen
dc.typetesis de maestríaes
dc.typemaster thesisen
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
ArreguiHernández_ErnestoSantiago_TFM_JORGE PEREZ MARTIN.pdf
Tamaño:
2.23 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.62 KB
Formato:
Item-specific license agreed to upon submission
Descripción: