Publicación:
Representation of interlaced trilattices

Cargando...
Miniatura
Fecha
2013
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Elsevier
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
Trilattices are algebraic structures introduced ten years ago into logic with the aim to provide a uniform framework for the notions of constructive truth and constructive falsity. In more recent years, trilattices have been used to introduce a number of many-valued systems that generalize the Belnap–Dunn logic of first-degree entailment, proposed as logics of how several computers connected together in a network should think in order to deal with incomplete and possibly contradictory information. The aim of the present work is to develop a first purely algebraic study of trilattices, focusing in particular on the problem of representing certain subclasses of trilattices as special products of bilattices. This approach allows to extend the known representation results for interlaced bilattices to the setting of trilattices and to reduce many algebraic problems concerning these new structures to the better-known framework of lattice theory.
Descripción
Categorías UNESCO
Palabras clave
Trilattices, Representation, Bilattices, Generalized truth values, Multilattices
Citación
Centro
Facultad de Filosofía
Departamento
Lógica, Historia y Filosofía de la Ciencia
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra