Cargando...
Miniatura
Fecha
2024-01-17
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Springer Nature

Citas

0 citas en WOS
0 citas en
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
We consider a nonzero-sum N -player Markov game on an abstract measurable state space with compact metric action spaces. The payoff functions are bounded Carathéodory functions and the transitions of the system are assumed to have a density function satisfying some continuity conditions. The optimality criterion of the players is given by a total expected payoff on an infinite discrete-time horizon. Under the condition that the game model is absorbing, we establish the existence of Markov strategies that are a noncooperative equilibrium in the family of all history-dependent strategies of the players for both the constrained and the unconstrained problems. We obtain, as a particular case of results, the existence of Nash equilibria for discounted constrained and unconstrained game models.
Descripción
Categorías UNESCO
Palabras clave
Nonzero-sum Markov games, Nash equilibrium, Constrained and unconstrained games, Total expected payoff criterion, Absorbing game model
Citación
Dufour, F., Prieto-Rumeau, T. Nash Equilibria for Total Expected Reward Absorbing Markov Games: The Constrained and Unconstrained Cases. Appl Math Optim 89, 34 (2024). https://link.springer.com/article/10.1007/s00245-023-10095-1 https://doi.org/10.1007/s00245-023-10095-1
Centro
Facultad de Ciencias
Departamento
Estadística, Investigación Operativa y Cálculo Numérico
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra