Publicación:
Social Bot Detection Using Deep Learning and Linguistic Features: A State-of-the-Art Literature Review

Cargando...
Miniatura
Fecha
2025-03-11
Editor/a
Director/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Licencia Creative Commons
http://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
Título de la revista
ISSN de la revista
Título del volumen
Editor
Universidad Nacional de Educación a Distancia (UNED). Facultad de Filología
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
In the current online landscape, social media bots have evolved from simple, rule-based software to sophisticated LLM-assisted entities capable of mimicking human interaction. Detection methods relying on metadata-based features have become increasingly ineffective against these new bot models, necessitating an exploration of linguistic and content-based approaches. This work serves as a primer on the social bot detection task for linguists as well as a semi-systematic qualitative literature review on state-of-the-art social bot detection. The former includes a discussion of social impact, different types of deep learning models, feature sets, and linguistic indicators of synthetic text. By examining 14 examples of cutting-edge research published from 2022 to 2024, the literature review assesses the efficacy of neural network architecture leveraging linguistic features in identifying social bot activity. The review highlights key challenges, such as adversarial evasion tactics, computational overhead, and ethical considerations surrounding privacy and false positives. Toward this end, datasets, success rates in F1-score, model architectures, and handcrafted features have been extracted and explored. Furthermore, the study discusses the role that training data, linguistic embeddings, and learning styles play in improving detection models. This work’s main findings include the need for dataset coherency, scalable, real-time frameworks, unsupervised or self-supervised learning styles, and model explainability.
Descripción
Categorías UNESCO
Palabras clave
social bots, social bot detection, synthetic text detection, artificial intelligence, linguistic embeddings
Citación
Beres, Sean Robert. Trabajo Fin de Máster: Social Bot Detection Using Deep Learning and Linguistic Features: A State-of-the-Art Literature Review. Universidad Nacional de Educación a Distancia (UNED) 2025
Centro
Facultad de Filología
Departamento
Filologías Extranjeras y sus Lingüísticas
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra
DOI