Fecha
2014-10-10
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/closedAccess
Título de la revista
ISSN de la revista
Título del volumen
Editorial
Springer

Citas

0 citas en WOS
0 citas en
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
One of the most challenging context features to detect when making recommendations in educational scenarios is the learner’s affective state. Usually, this feature is explicitly gathered from the learner herself through questionnaires or self-reports. In this paper, we analyze if affective recommendations can be produced with a low cost approach using the open source electronics prototyping platform Arduino together with corresponding sensors and actuators. TORMES methodology (which combines user centered design methods and data mining techniques) can support the recommendations elicitation process by identifying new recommendation opportunities in these emerging social ubiquitous networking scenarios.
Descripción
The registered version of this conference paper, first published in "Chen, Y., et al. Web-Age Information Management. WAIM 2014. Lecture Notes in Computer Science(), vol 8597, Springer, Cham", is available online at the publisher's website: https://doi.org/10.1007/978-3-319-11538-2_25
Acceso al texto completo: https://rdcu.be/eDIEs
Categorías UNESCO
Palabras clave
Contextual recommender systems, Educational recommender systems, Ubiquitous computing, Affective computing, Arduino, Sensors, Actuators, ISO 9241-210
Citación
Santos, O.C., Boticario, J.G. (2014). Exploring Arduino for Building Educational Context-Aware Recommender Systems that Deliver Affective Recommendations in Social Ubiquitous Networking Environments. In: Chen, Y., et al. Web-Age Information Management. WAIM 2014. Lecture Notes in Computer Science(), vol 8597. Springer, Cham.
Centro
E.T.S. de Ingeniería Informática
Departamento
Inteligencia Artificial
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra
Datos de investigación relacionados