Publicación:
Downsizing strategy for an air-cooled indirect-fired single-effect ammonia-water absorption chiller in part-load operation in hot climates

Cargando...
Miniatura
Fecha
2024
Autores
Palacios Lorenzo, María Esther
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Elsevier
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
A modular mathematical model has been created to simulate an ammonia-water absorption refrigeration system indirectly fired and air-cooled. The model includes governing equations based on mass, species, and energy balances, implemented for the main components of the system. It accounts for both thermal and mass resistances in the transfer processes that occur in the system. The study evaluates the performance of the ROBUR® absorption refrigeration system, model ACF60-00 LB, operating under part-load conditions, driven by hot water temperatures ranging between 160 and 210 °C, while the ambient temperature remains up to 40 °C. This refrigeration system is characterised by including an extra valve that allows active control of the pressure levels of the system. The analysis focusses on the effect of its active control on the size of the system. The results show that increasing the pressure loss in this valve reduces the size of the air-cooled absorber to 37.3 % of its nominal size at an ambient temperature of 40 °C, while the reduction in refrigerant mass flow is 18.5 %, while the condenser size decreases 3.1 times. Evaporator, air-cooled absorber and condenser effectiveness are minimally affected. Additionally, contribution of condenser and evaporator to exergy destruction is balanced.
Descripción
Categorías UNESCO
Palabras clave
Downsizing, Thermodynamics, Ammonia-water, hot climate, Absorption, Gax
Citación
Centro
E.T.S. de Ingenieros Industriales
Departamento
Ingeniería Energética
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra