Publicación:
Non-parametric analysis of serial dependence in time series using ordinal patterns

dc.contributor.authorWeiß, Christian H.
dc.contributor.authorRuiz Marín, Manuel
dc.contributor.authorKeller, Karsten
dc.contributor.authorMatilla García, Mariano
dc.date.accessioned2024-12-02T10:34:35Z
dc.date.available2024-12-02T10:34:35Z
dc.date.issued2022-04
dc.descriptionEste es el manuscrito aceptado del artículo. La versión registrada fue publicada por primera vez en Computational Statistics & Data Analysis, (2022) 168, 107381, está disponible en línea en el sitio web del editor: https://doi.org/10.1016/j.csda.2021.107381 This is the accepted manuscript of the article. The registered version was first published in Computational Statistics & Data Analysis, (2022) 168, 107381, it is available online at the publisher's website: https://doi.org/10.1016/j.csda.2021.107381
dc.description.abstractA list of new tests for serial dependence based on ordinal patterns are provided. These new methods rely exclusively on the order structure of the data sets. Hence, the novel tests are stable under monotone transformations of the time series and robust against small perturbations or measurement errors. The standard asymptotic distributions are given, and their finite sample behavior under linear and non-linear departures from the null of independence are studied. Moreover, it is proved that under mild conditions, any ordinal-pattern-based test is nuisance free, which is appealing for modelling, as these tests can eventually be used as misspecification tests. This property is also analyzed for finite samples and illustrated through an empirical application. Much of the discussion is based on a detailed combinatorial analysis of ordinal pattern probabilitiesen
dc.description.versionversión final
dc.identifier.citationWeiß, C. H., Marín, M. R., Keller, K., & Matilla-García, M. (2022). Non-parametric analysis of serial dependence in time series using ordinal patterns. Computational Statistics & Data Analysis, 168, 107381. https://doi.org/10.1016/j.csda.2021.107381
dc.identifier.doihttps://doi.org/10.1016/j.csda.2021.107381
dc.identifier.issn0167-9473
dc.identifier.urihttps://hdl.handle.net/20.500.14468/24622
dc.journal.titleComputational Statistics & Data Analysis
dc.journal.volume168
dc.language.isoen
dc.publisherElsevier
dc.relation.centerFacultades y escuelas::Facultad de Ciencias Económicas y Empresariales
dc.relation.departmentEconomía Aplicada y Estadística
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
dc.subject53 Ciencias Económicas
dc.subject.keywordsnon-parametric testsen
dc.subject.keywordsordinal patternsen
dc.subject.keywordsordinal time seriesen
dc.subject.keywordsreal-valued time seriesen
dc.subject.keywordsserial dependenceen
dc.titleNon-parametric analysis of serial dependence in time series using ordinal patternsen
dc.typeartículoes
dc.typejournal articleen
dspace.entity.typePublication
relation.isAuthorOfPublication7ad4a531-f3a5-451d-a646-48a1cd0ad86e
relation.isAuthorOfPublication.latestForDiscovery7ad4a531-f3a5-451d-a646-48a1cd0ad86e
Archivos
Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Non-parametric_MARIANO-MATILLA.pdf
Tamaño:
394.49 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.62 KB
Formato:
Item-specific license agreed to upon submission
Descripción: